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Abstract. The anisotropic scale space (ASS) is often used to enhance the performance of a scale-
invariant feature transform (SIFT) algorithm in the registration of synthetic aperture radar (SAR)
images. The existing ASS-based methods usually suffer from unstable keypoints and false
matches, since the anisotropic diffusion filtering has limitations in reducing the speckle noise
from SAR images while building the ASS image representation. We proposed a speckle reducing
SIFT match method to obtain stable keypoints and acquire precise matches for the SAR image
registration. First, the keypoints are detected in a speckle reducing anisotropic scale space con-
structed by the speckle reducing anisotropic diffusion, so that speckle noise is greatly reduced
and prominent structures of the images are preserved, consequently the stable keypoints can be
derived. Next, the probabilistic relaxation labeling approach is employed to establish the matches
of the keypoints then the correct match rate of the keypoints is significantly increased. Experi-
ments conducted on simulated speckled images and real SAR images demonstrate the effective-
ness of the proposed method. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:
10.1117/1.JRS.10.036030]
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1 Introduction

Synthetic aperture radar (SAR) image registration is one of many key procedures in applications
such as change detection, image fusion, and three-dimensional reconstruction.1 The current
registration methods can be generally classified into two categories: area-based methods and
feature-based methods. Due to complex geometric deformations and low texture in SAR images,
the area-based methods are time consuming and often produce local extrema when estimating
the correspondence among the registered images. Compared with the area-based methods,
the feature-based methods are computationally efficient and recommended for the SAR image
registration, since many distinctive features can usually be obtained from SAR images.2–4

The feature-based methods consist of three steps: feature detection, feature description, and
feature matching.5 In the feature detection step, the multiscale space of an image is required to be
constructed via filtering the original image with an appropriate function over increasing scale or
time. For building the multiscale representation, Gaussian kernel is the simplest option. For in-
stance, the conventional scale-invariant feature transform (SIFT)6 algorithm utilizes Gaussian
filter to blur the image and establish a Gaussian scale space, then the features are detected
at different scale levels and resolutions. The conventional SIFT algorithm has been successfully
employed to the registration of optical remote sensing images. However, it fails to provide favor-
able results while dealing with the SAR images. The reason is the fact that Gaussian blurring is
one instance of isotropic diffusion filtering which is sensitive to speckle noise and does not
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respect the natural boundaries of the object.7 As a consequence, many unstable keypoints are
brought from the Gaussian scale space of SIFT and then the matching performance is degraded.
Here, the unstable keypoints are the control points of an image that cannot be repeated in another
image being registered.8

To enhance the performance of multiscale feature detection of SIFT, it is appropriate to make
the blurring adaptive to the image texture so that the noise is smoothed and the image edge
remains unaffected. Hence, anisotropic diffusion filters, such as bilateral filter (BF), adapted
anisotropic Gaussian (AAG) function, and Perona–Malik equation, are utilized to construct
an anisotropic scale space (ASS) for the SAR image registration. The improvements of
SIFT algorithm for SAR images have been presented in some literature. Wang et al.9 proposed
a BFSIFTalgorithm to obtain accurately located keypoints by generating the ASS with BF. Later,
an AAG-SIFT method was introduced for reducing the influence of speckle noises via building
the ASS with an AAG filter.10 Recently, Fan et al.7 utilized Perona–Malik equation to construct
the ASS, where the gradient magnitude of ASS is computed by the ratio of exponential weighted
average operator.

These ASS-based methods are able to preserve the image edges and improve the feature
location accuracy. However, they cannot effectively reduce the unstable keypoints caused by
the speckle noise from SAR images. The reason for this is that in the existing ASS-based
approaches, the anisotropic diffusion filters adaptively smooth the noises and preserve the
edges due to their different image gradient magnitudes. If the images contain strong multipli-
cative noises such as speckles, then the image edges are difficult to distinguish from the speckled
homogeneous region, since both the image boundaries and the multiplicative noises lead to high
image gradient magnitudes.11 As a result, the speckle noises from the SAR images will be
preserved instead of being smoothed by the anisotropic diffusion filters and then identified
as unstable keypoints in the ASS.

In the situation of feature matching, the nearest-neighbor distance ratio (NNDR)6 is the most
common method, where the candidate matches are identified based on the nearest neighbor of
the keypoints and the best matches are obtained under a distance ratio. For further improving the
effectiveness of NNDR in the SAR image registration, Wang et al.9 proposed a dual matching
(DM) method in which the NNDR strategy is adopted in the reference and sensed image sep-
arately. By analyzing the dominant orientation consistency (DOC) properties of the keypoints, a
DOC method is introduced to enhance the keypoint correct match rate for SAR images. These
methods establish the keypoint matches based on the maxima similarity of the keypoint descrip-
tor. Due to similar patterns in SAR images, a pair of keypoints associated with the maximum
similarity does not always correspond to the best match pair. Moreover, we observe that the
correlation of the keypoints is a multipeak function, then the similarity of the correct matching
may not be at the maximum peak. Therefore, it is reasonable to identify the matches based on the
keypoint global consistency.

In this paper, we proposed a speckle reducing SIFT (SR-SIFT) match method to obtain stable
keypoints and precise matches for the SAR image registration. The contributions of this paper
are as follows. First, a speckle reducing anisotropic scale space (SRASS) is constructed based on
the speckle reducing anisotropic diffusion (SRAD). Due to the gradient magnitude operator and
the Laplacian operator of SRAD, speckle noises are greatly reduced and the edges of the images
are preserved in the SRASS, then the stable keypoints can be obtained. Second, we utilize the
probabilistic relaxation labeling (PRL) approach to establish the matches of the keypoints via a
global optimization process, where the compatibility coefficient of PRL is evaluated depending
upon the adaptive support windows. With the PRL matching, the keypoint correct match rate is
significantly enhanced. We validate our method on simulated images and real SAR images and
the experimental results demonstrate the effectiveness of our method.

2 Proposed Method

The proposed SR-SIFT match algorithm focuses on two improvements: (1) utilizing the SRAD
to construct an SRASS for obtaining stable keypoints and (2) employing PRL matching
approach for increasing the correct match rate of keypoints. The main steps of the proposed
method are shown in Fig. 1.
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2.1 Speckle Reducing Anisotropic Scale Space

The existing ASS-based methods overcome the shortcomings of the conventional SIFT algo-
rithm based on anisotropic diffusion filtering. However, they suffer from unstable keypoints
caused by speckle noises in SAR images, since the anisotropic diffusion filters detect edges
depending upon image gradient magnitude and would not smooth the speckled homogeneous
regions. To enhance the stability of the keypoint detection, we construct an SRASS using the
SRAD. Then the keypoints are detected in the SRASS.

The SRAD12 is an edge-sensitive partial differential equation version of the conventional
speckle reducing filters, such as Lee and Frost. Let I0ðx; yÞ be the origin intensity image and
Iðx; y; tÞ be the filtered image, then SRAD can be written as

EQ-TARGET;temp:intralink-;e001;116;339

�
∂Iðx; y; tÞ∕∂t ¼ div½cðqÞ · ∇Iðx; y; tÞ�
Iðx; y; 0Þ ¼ I0ðx; yÞ ; (1)

where div and ∇ are divergence and gradient operators, and the time t is the scale parameter.
In Eq. (1), cðqÞ refers to the conductivity coefficient defined as

EQ-TARGET;temp:intralink-;e002;116;270cðqÞ ¼ 1

1þ ½q2ðx; y; tÞ − q20ðtÞ�∕fq20ðtÞ½1þ q20ðtÞ�g
: (2)

The conductivity coefficient cðqÞ is a monotone increasing function in scope (0, 1), which con-
trols the diffusion process. Small cðqÞ leads to slow diffusion speed thus the image texture is
preserved. While large cðqÞ results in fast diffusion speed, thus the image texture is smoothed.
The argument qðx; y; tÞ in the conductivity coefficient serves as an edge detector for SRAD
determined by

EQ-TARGET;temp:intralink-;e003;116;166qðx; y; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1∕2Þðj∇j∕IÞ2 − ð1∕16Þð∇2I∕IÞ2

½1þ ð1∕4Þð∇2I∕IÞ�2

s
: (3)

The edge detector qðx; y; tÞ exhibits different values for the image edges and the speckled
regions on the basis of the normalized gradient magnitude operator j∇j∕I and the normalized
Laplacian operator ∇2I∕I. At the center of an edge, the Laplacian term undergoes zero crossing
and the gradient term dominates, leading to a relatively large qðx; y; tÞ. Then the conductivity

Reference SAR image Sensed SAR image

Construct SRASS using SRAD according to the evolution times

Extract the keypoints based on the SRASS

Identify the matches of keypoints via PRL

Align the images depending on the keypoint matches

Registered SAR images

Obtain a set of discrete evolution times

Construct adaptive windows depending upon the keypoints

Establish the compatibility coefficient based on the adaptive window

Keypoint detection

Keypoint matching

Fig. 1 The main steps of the proposed method.
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coefficient approaches 0 and the edge is preserved. While in the speckled homogeneous regions,
the normalized image divergence is approximately equal to the normalized gradient magnitude,
resulting in a relatively small qðx; y; tÞ. Thus the conductivity coefficient closes to 1 and
the speckle noise is smoothed. The q0ðtÞ is the diffusion threshold estimated by q0ðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var½zðtÞ�p
∕zðtÞ, where var½zðtÞ� and zðtÞ are the variance and mean of the image intensity

over a homogeneous area at the time t. Additionally, q0ðtÞ controls the amount of smoothing
applied to the image by SRAD.

In applications, since there are no analytical solutions for Eq. (1), a numerical method is used
to make an approximation of SRAD. In Ref. 12, the SRAD is implemented based on the simplest
finite difference discretization by means of a so called explicit or Euler-forward scheme. This
scheme requires very small time steps in order to be stable, which leads to poor efficiency and
limits its applications. Fortunately, Weickert et al.13 presented a semi-implicit schema to enhance
the effectiveness and efficiency of solving the anisotropic diffusion filtering equation in Ref. 13.
The backbone of this schema is the use of the additive operator splitting (AOS) technique, which
is rotationally invariant and computationally efficient. Moreover, the semi-implicit schema is
stable for all time steps. By means of the semi-implicit schema, Eq. (1) can be discretized
and reconstructed as an iterative form

EQ-TARGET;temp:intralink-;e004;116;529Iiþ1 ¼
�
E − ðtiþ1 − tiÞ

Xm
l¼1

AlðIiÞ
�−1

Ii; (4)

where Ii and Iiþ1 are the image vector representations at time ti and tiþ1, E is the identity matrix,
l denotes the discretizing direction, and AlðIiÞ is a matrix which encodes the conductivity coef-
ficient cðqÞ along the l’th dimension. Suppose the image hasM rows andN columns, the process
of image smoothing can be separated into two one-dimensional cases based on the AOS strategy.
In the case of filtering the image along the horizontal dimension (i.e., l ¼ x, along the x coor-
dinate axis), let Iiþ1

x be the image at the time tiþ1 and Iiþ1
x;r be the r’th row of Iiþ1

x . Then Iiþ1
x;r

corresponds to the solution of equation ½E − 2ðtiþ1 − tiÞAxðIiÞ�Iiþ1
x;r ¼ Iix;r, in which Iiþ1

x;r is an
N × 1 vector and AxðIiÞ is an N × N matrix whose element auv is determined by

EQ-TARGET;temp:intralink-;e005;116;381auv ¼

8><
>:

ðciu þ civÞ∕2 v ∈ NðuÞ
−

P
k∈NðuÞ

ðciu þ cikÞ∕2 v ¼ u

0 else

; (5)

where u is the index of the pixel in vector Iiþ1
x;r , NðuÞ represents the neighborhood of u, and ciu is

the conductivity coefficient of the pixel associated with u at the time ti depending on Eq. (2).
Hence, the image Iiþ1

x along the horizontal dimension can be derived row by row according to
Iiþ1
x;r for r ¼ 1; : : : ;M. Meanwhile, the image Iiþ1

y at the time tiþ1 along the vertical dimension
(i.e., l ¼ y, along the y coordinate axis) can be obtained in the same manner. As a consequence,
the final blurred image Iiþ1 at the time tiþ1 can be determined by Iiþ1 ¼ ðIiþ1

x þ Iiþ1
y Þ∕2. More

details about how to construct AlðIiÞ and compute Iiþ1 can be found in Ref. 13. Note that since
the system matrix AlðIiÞ is tridiagonal and diagonal dominant, Eq. (4) can be efficiently solved
by the Thomas algorithm.

For constructing the multiscale image representation, we divide the scale space of the image
into O octaves and S sublevels logically as done in SIFT. Note that we always perform the
blurring at the resolution of the origin image, instead of downsampling the image at each new
octave. Suppose that the set of octaves and sublevels are identified by index o and index s, then o
and s can be mapped to their corresponding scale by

EQ-TARGET;temp:intralink-;e006;116;142σiðo; sÞ ¼ σ02
oþs∕S; o ∈ ½0; O − 1�; s ∈ ½0; S − 1�; i ∈ ½0; N�; (6)

where σ0 is the base scale and N ¼ O × S is the total number of blurred images in the multiscale
space. Since the anisotropic diffusion filtering is defined in time terms, the discrete scale σi is
required to be converted into time units using the equation14

Wang, Li, and Xu: Speckle-reducing scale-invariant feature transform match for synthetic aperture radar...

Journal of Applied Remote Sensing 036030-4 Jul–Sep 2016 • Vol. 10(3)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 09/27/2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



EQ-TARGET;temp:intralink-;e007;116;735ti ¼ σ2i ∕2: (7)

From Eq. (7), we obtain a set of discrete evolution times ft0; t1; : : : tNg for i ¼ 0; : : : ; N. Then,
according to the evolution times ft0; t1; : : : tNg and the matrix AlðIiÞ, it is straightforward to
derive a set of blurred images fI1; I2; : : : ; INg in an iterative way using Eq. (4). Thus, the
SRASS image representation LSRASS can be expressed as

EQ-TARGET;temp:intralink-;e008;116;666LSRASS ¼ fI1ðt1Þ; I2ðt2Þ; : : : ; INðtNÞg; (8)

where ti is the scale level in the time term corresponding to the blurred image Ii in the SRASS
(i ¼ 1; : : : ; N). In our experiments, the base scale σ0 and the total number of octavesO in Eq. (6)
are set at 1.6 and 3 as suggested in Ref. 6. Moreover, our experimental results indicate that the
performance of the proposed method is robust when the total number of the blurred images
N ∈ ½8;10�. If N > 10, it is computationally expensive for constructing the SRASS representa-
tion while N < 8, and we cannot obtain a reasonable quantity of stable keypoints for accurately
evaluating the transform parameters. Thus, an appropriate total number of the blurred images N
is 9 and the quantity of sublevels S in each octave is 3. Figure 2 shows a comparison between the
SRASS and the anisotropic Gaussian space (AGSS) for several evolution times given the same
reference SAR image. As can be observed, strong speckle noises are smoothed and prominent
structures are preserved in the SRASS, whereas in the AGSS the speckle noises are retained or
even enhanced.

After the SRASS have been constructed, the difference between adjacent smoothed images in
the SRASS is performed. Then the keypoints are detected as done in the SIFT algorithm. In the
SRASS, the speckle noises are significantly reduced and the prominent structure of the images is
preserved, thus stable and accurately located keypoints can be obtained.

2.2 Probabilistic Relaxation Labeling Matching Approach with Adaptive Support
Window

The PRL is an iterative process that propagates label probabilities globally via local inter-
actions.15 Suppose that the keypoint sets of the reference and sensed image are P ¼ fpigm1

Fig. 2 Comparison between the SRASS and anisotropic Gaussian scale space (AGSS) for sev-
eral evolution times t i . The first row is the AGSS which is built by anisotropic Gaussian filtering,
where the image ENL values at the time t i ¼ 1.28, 5.12, and 20.48 are 1.12, 2.42, and 3.53,
respectively. The second row is the SRASS constructed based on SRAD, where the image
ENL values at the time t i ¼ 1.28, 5.12, and 20.48 are 1.24, 3.73, and 6.56, respectively.
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andQ ¼ fqjgn1 , the keypoint matching can be regarded as a task of assigning a consistent unam-
biguous label qj ∈ Q to each object pi ∈ P on the basis of contextual information. In the
iterative process, the compatibility coefficient plays an important role in updating the label
probabilities. Since the keypoints produce similar descriptors in SAR images, the adaptive sup-
port window relying upon the keypoints is employed for establishing the keypoint local inter-
actions. Then the normalized cross-correlation (NCC)16 measure of the corresponding windows
in the reference image and the sensed image is used as the compatibility coefficient of PRL.
Unlike the conventional fixed size rectangle windows, the support window in our method is
referred to as the image line segment whose endpoints are the keypoints of the image. Thus,
the proposed window can be adaptively constructed depending on the distribution of the key-
points, where the size of the support window is determined by the distance of the chosen key-
points. Moreover, if the corresponding support windows in the reference image and sensed
image are in different sizes, a resampling should be performed to ensure they have the same
size before comparing their similarities. By this method, the impact of image geometric distor-
tion is significantly reduced and the matching performance can be improved. The PRL matching
method is carried out as below.

As shown in Fig. 3, let ph and qk be any keypoints other than pi and qj in P and Q, and the
δijðh; kÞ be the compatibility coefficient between ph and qk when pi pairs with qj. Then the
image line segment from pi to ph is defined as the target support window LP, and the image line
segment from qj to qk is defined as the search support window LQ. Since the length of LP is
different from the length of LQ, we resample LP and LQ to the same size. Note that the compat-
ibility coefficient δijðh; kÞ based on the NCC ranges from −1 to 1. If δijðh; kÞ is equal to 1 (or
−1), the pairs (ph; qk) and (pi; qj) have the maximal (or minimal) compatibility, so that (ph; qk)
should provide (pi; qj) with the maximal (or minimal) support. Meanwhile, the support of
(pi; qj) declines with the decrease of δijðh; kÞ. Because the range of the support function is
in the scope [0, 1], the support of (pi; qj) provided by (ph; qk) can be represented as

EQ-TARGET;temp:intralink-;e009;116;424ϕijðh; kÞ ¼ 1∕
�
1þ e− tan½π

2
δijðh;kÞ��: (9)

For each ph, it is required that only one qk corresponds to ph when pi is paired with qj. Hence,
the support of (pi; qj) associated with ph is defined as maxk≠j½ϕijðh; kÞ�. To obtain the total
support sð0Þij for (pi; qj), we average the contributions of all ph

EQ-TARGET;temp:intralink-;e010;116;354sð0Þij ¼ 1

m − 1

X
h≠i

max
k≠j

½ϕijðh; kÞ�: (10)

In computing sð0Þij , any two keypoints can be paired at the initial iteration. While at the r’th
iteration ðr > 0Þ, the support of (pi; qj) given by (ph; qk) should depend on ϕijðh; kÞ as
well as its previous support sðr−1Þhk , which allows local support to propagate. Therefore, we
take the average of theses and the support function sðrÞij at the r’th iteration can be defined as

ip

hp kq

jq
Reference image Sensed image

PL QL

Fig. 3 The construction of adaptive support windows for PRL, where pi is brought into pairing with
qj , and ph is brought into pairing with qk . LP is the target window in the reference image and LQ is
the search window in the sensed image.
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EQ-TARGET;temp:intralink-;e011;116;735sðrÞij ¼ 1

2ðm − 1Þ
X
h≠i

max
k≠j

½sðr−1Þhk þ ϕijðh; kÞ�: (11)

Let Sð0Þ ¼ ½sð0Þij �
m×n and SðrÞ ¼ ½sðrÞij �m×n be the matching probability matrices at the initial and

r’th iteration. In the iteration process, the matching probabilities of correct matches are increas-
ing, while the matching probabilities of false matches are declining. Moreover, the iteration
process stops if either the maximum number of the iteration is achieved or the absolute
error of matching probabilities at the r’th and ðr − 1Þ’th iteration is smaller than a given thresh-
old ε, i.e.,

EQ-TARGET;temp:intralink-;e012;116;625δðrÞ ¼
Xm
i¼1

Xn
j¼1

½sðrÞij − sðr−1Þij � < ε: (12)

Let SðlÞ be the matching probability matrix at the last iteration. ðpi; qjÞ is identified as a pair of
matched keypoints if sðlÞij is the maximum element of SðlÞ in that row and column.

3 Experimental Results

To validate the effectiveness of the proposed method, we conduct experiments on a sequence of
simulated speckled images and pairs of real SAR images taken from different times, polariza-
tions, and incidence angles. We first investigate the stability and robustness of keypoint detection
on the sequence of simulated images. Then we evaluate the keypoint matching performance
using the datasets of real SAR images. All the experiments are carried out on a workstation
with Intel Xeon CPU and 16 GB memory.

3.1 Stability and Robustness of Keypoint Detection

In this section, the stability and robustness of the keypoint detectors are tested with the help of
the repeatability rate. The repeatability rate evaluates the ratio of the number of keypoints
repeated between two images to the total number of detected keypoints under a given location
error ϵ.8 The repeatability criterion provides a measure of the stability of keypoint detection,
where a high repeatability rate presents strong stability of the keypoint descriptor. For creating
the sequence of simulated speckled images, we add multiplicative noise to an original gray image
based on the multiplicative model. Since the observed intensity at each resolution cell of SAR
images can be formulated by a multiplicative noise of unit mean,17 we construct the simulated
image sequence using the equation Li ¼ Hi × L0 (i ¼ 1; : : : ; 10), where L0 is the origin image,
Li is the i’th speckled image in the sequence, Hi is the Gaussian noise of mean 1, and the stan-
dard deviation is 0.1 × i. The equivalent number of look (ENL) values of the images in the
sequence can be evaluated by ð0.1 × iÞ−1,18 for i ¼ 1; : : : ; 10. Figure 4 shows a part of the simu-
lated sequence.

To test the keypoint detection performance against speckle noise, the repeatability rates
between L0 and Li (i ¼ 1; : : : ; 10) are evaluated. We compare our method with several
ASS-based algorithms designed for SAR image registration, including BFSIFT,9 AAG-
SIFT,10 and NDSS-SIFT (NDSS denotes nonlinear diffusion scale space).7 We also compare
the proposed method with SAR-SIFT,19 whose main modification is based on the SAR-
Harris scale space constructed by a new multiscale SAR-Harris function. The repeatability
rates of the five methods are shown in Fig. 5(a). It can be observed that although the repeatability
rates of the five methods decline with the variance of speckle noises, SR-SIFT always exhibits a
better stability in terms of keypoint detection. Note that the keypoint detection performance of
SAR-SIFT is unstable. It obtains comparable repeatability rates with SR-SIFT in some cases,
while getting low repeatability rates in other cases. It is also noticeable that the repeatability rate
obtained by SR-SIFT falls more slowly than the repeatability rate acquired using the other four
methods. These facts imply that SR-SIFT produces a favorable result for reducing the impact of
speckle noises. As a consequence, unstable keypoints caused by the noises can be significantly
suppressed.
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Furthermore, the repeatability rates are evaluated between L0 and L6 under various trans-
formations including scale change, image rotation, and illumination variation. The experimental
results are shown in Figs. 5(b)–5(d). It can be observed that the repeatability rates of SR-SIFT
outperform its competitors for all the analyzed sequences. This fact demonstrates that SR-SIFT is
a more robust local invariant feature detector for the registration of speckled images.

3.2 Performance of Keypoint Matching

Six datasets consisting of various SAR images are used in our second experiment.
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Fig. 5 Repeatability rates of the five testing methods, where the location error ϵ ¼ 1.2 pixels.
(a) Repeatability rate for speckle noise variance. (b) Repeatability rate for scale change.
(c) Repeatability rate for image rotation. (d) Repeatability rate for uniform illumination variation.

Fig. 4 A part of the simulated image sequence. (a) The origin gray image L0. (b) The speckled
image L6 with noise variance 0.6, where the ENL value is 1.67.
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1. Dataset 1: two SAR images taken over an agricultural scene from ALOS-PALSAR sys-
tem with a size of 1146 × 1250 pixels are included in dataset 1. The reference image [left
image in Fig. 6(a)] is obtained for the VV polarization in May, 2007, and the sensed
image [right image in Fig. 6(a)] is obtained for the HV polarization in March, 2009.
The ENL values of the reference image and sensed image are 8.03 and 8.12.

2. Dataset 2: dataset 2 contains two SAR images collected by TerraSAR-X satellite with a
size of 1035 × 1024 pixels in the area of Toulouse, France, at different incidence angles.
The reference image [left image in Fig. 6(c)] is taken at an incidence angle of 34 deg and
the sensed one [right image in Fig. 6(c)] is taken at an incidence angle of 29 deg. The
ENL values of the reference image and sensed image are 3.01 and 2.97.

3. Dataset 3: this dataset includes two SAR images obtained from NASA/JPL AIRSAR, an
airborne SAR sensor used by the National Aeronautics and Space Administration/Jet
Propulsion Laboratory. The reference image [left image in Fig. 6(e)] has a size of 1102 ×
1136 pixels and the sensed image [right image in Fig. 6(e)] has a size of 1346 × 1398

pixels. The ENL values of the reference image and sensed image are 1.15 and 1.08. Note
that there exist substantial relative rotations between the two images in dataset 3.

4. Dataset 4: this dataset consists of two 1324 × 1320 pixels SAR images taken by
Radarsat-2 covering the area of Yellow River Estuary. The reference image [left image
in Fig. 6(g)] is single-look SAR image acquired in 2009, and the sensed image
[right image in Fig. 6(g)] is fourth-look SAR image obtained in 2008. The ENL values
of the reference image and sensed image are 1.12 and 5.21. Note that the two images in
dataset 4 have very different noise levels.

5. Dataset 5: dataset 5 contains two SAR images sized of 1143 × 1121 pixels with reso-
lution of 3 m. The reference image [left image in Fig. 6(i)] is taken by Radarsat-2 and the
sensed one [right image in Fig. 6(i)] is taken by TerraSAR. The ENL values of the refer-
ence image and sensed image are 6.16 and 7.43. Note that there has been a great differ-
ence between the reference and sensed images in terms of texture, since the two images
are coming from different sensors.

6. Dataset 6: two airborne X- and P-band SAR images taken from different look angles are
included in dataset 6. These images are captured from a rural area with a size of 1426 ×
1420 pixels. The reference image [left image in Fig. 6(k)] is X-band image obtained on
December 7, 2010, and the sensed image [right image in Fig. 6(k)] is P-band image
acquired on December 4, 2010. The ENL values of the reference image and sensed
image are 7.21 and 7.28.

In the experiments, we first obtain the keypoints by the proposed method (the repeatability
rates of the proposed method for dataset 1 to 6 are 0.88, 0.76, 0.67, 0.61, 0.70, and 0.72, respec-
tively), and then identify the matches of keypoints by NNRD, DM, DOC, and PRL matching
methods. The experimental results of the four matching methods for the six datasets are reported
in Tables 1–6, where CMN is the number of correct matches, TMN is the total number of key-
point matches, CMR is the correct match rate that is determined by the ratio of CMN to TMR,
and RMSE is the root-mean-square error evaluated by the method in Ref. 20. From Tables 1–6,
we can see that PRL always has the greatest value of CMN and CMR in the four comparing
methods for the six datasets. The reason is that in our matching method, the keypoints with
similar descriptors can be effectively differentiated via the global optimization process.
Meanwhile, the adaptive support windows constructed based on the keypoints also improve the
matching stability against image geometric distortions. In addition, our method exhibits a higher
registration accuracy according to the RMSE values in Tables 1–6, which indicates that a greater
number of correct matches contributes to calculating accurate transformation parameters.

The iteration processes of PRL matching for the testing datasets are shown in Fig. 6. It can be
seen that although many false matches appear at the initial iteration for the six datasets [see
Figs. 6(a), 6(c), 6(e), 6(g), 6(i), and 6(k)], the false matches are significantly filtered out by
PRL matching in the global optimization process at the last iteration [see Figs. 6(b), 6(d), 6(f),
6(h), 6(j), and 6(l)]. This phenomenon can be explained by Fig. 7. As shown in Fig. 7, the CMR
of PRL increases with the increase of the iteration time and the iteration process stops when the
CMR reaches steady values. In addition, Fig. 7 shows that the convergence speed of PRL match-
ing for dataset 1 is faster than that for the other five datasets. The reason is the fact that the images
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Fig. 6 The iteration processes of PRL matching for datasets 1–6. (a), (c), (e), (g), (i), and (k) The
matching results at the initial iteration for datasets 1–6. (b), (d), (f), (h), (j), and (l) The matching
results at the last iteration for datasets 1–6.
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Table 1 Matching performance for dataset 1.

NNDR DM DOC PRL

CMN 212 232 254 323

TMN 408 380 339 344

CMR 0.52 0.61 0.75 0.94

RMSE 0.94 0.73 0.56 0.41

Table 2 Matching performance for dataset 2.

NNDR DM DOC PRL

CMN 128 142 165 198

TMN 267 245 299 225

CMR 0.48 0.58 0.72 0.88

RMSE 1.28 0.96 0.82 0.51

Table 3 Matching performance for dataset 3.

NNDR DM DOC PRL

CMN 152 176 197 231

TMN 287 275 281 272

CMR 0.53 0.64 0.70 0.85

RMSE 1.12 0.83 0.74 0.55

Table 4 Matching performance for dataset 4.

NNDR DM DOC PRL

CMN 171 185 212 265

TMN 305 298 290 308

CMR 0.56 0.62 0.73 0.86

RMSE 1.09 0.80 0.72 0.51

Table 5 Matching performance for dataset 5.

NNDR DM DOC PRL

CMN 127 162 183 201

TMN 254 261 251 245

CMR 0.50 0.62 0.73 0.82

RMSE 1.21 0.83 0.77 0.68
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in dataset 1 contain more detailed information of texture, providing stronger support for the
correct matches in the global iteration process.

4 Conclusions

This paper presents an SR-SIFT method to obtain stable keypoints and precise matches for
the registration of SAR images. To reduce the unstable keypoints caused by the speckle noise,
an SRASS based on the SRAD is constructed. Moreover, to enhance the correct match rate, the
PRL matching is employed to establish the keypoint matches in an iterative way. Experiments
are carried on a sequence of simulated speckled images and pairs of real SAR images. The
experimental results demonstrate the effectiveness of the proposed method.
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