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Ship Detection From Optical Satellite Images
Based on Saliency Segmentation and

Structure-LBP Feature
Feng Yang, Qizhi Xu, and Bo Li

Abstract— Automatic ship detection from optical satellite
imagery is a challenging task due to cluttered scenes and
variability in ship sizes. This letter proposes a detection algorithm
based on saliency segmentation and the local binary pattern
(LBP) descriptor combined with ship structure. First, we present
a novel saliency segmentation framework with flexible integration
of multiple visual cues to extract candidate regions from different
sea surfaces. Then, simple shape analysis is adopted to eliminate
obviously false targets. Finally, a structure-LBP feature that
characterizes the inherent topology structure of ships is applied to
discriminate true ship targets. Experimental results on numerous
panchromatic satellite images validate that our proposed scheme
outperforms other state-of-the-art methods in terms of both
detection time and detection accuracy.

Index Terms— Context analysis, saliency segmentation, ship
detection, structure-local binary pattern (LBP) feature.

I. INTRODUCTION

DETECTING ships from remote sensing imagery is
vitally important for a wide range of applications that

include illegal smuggling, traffic surveillance, fishery man-
agement, and so on [1]. In existing works, synthetic aperture
radar (SAR) images play important roles in detecting and
tracing targets, because they are little affected by weather
and time [2]. However, SAR images usually include high-
level speckles, are insensitive to wooden materials, and are
difficult for humans to interpret. Compared with SAR images
and other types of remote sensing images, optical satellite
images have higher resolution and contain more detailed
information; thus, they are more suitable for target detection or
recognition [3]. Therefore, in recent years, many ship detection
algorithms intended for use with optical satellite images have
been proposed even though optical satellite images usually
suffer from interference by weather conditions, such as clouds
or mist, or from ocean waves.
Most existing methods adopt the “coarse-to-fine” strategy,

which includes two stages: ship candidate extraction and false
alarm elimination. In the first stage, these methods extract
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ship candidates based on the distinctness between potential
targets and the background. The difference between the various
algorithms lies primarily in the way they compute distinctness.
Some algorithms look for regions of distinct intensity [4]–[6],
while others detect distinct patterns, favoring regions with
a unique appearance within the entire image [1], [7]–[9].
Although both types of methods achieve impressive perfor-
mance in ship detection on simple scenes, they perform poorly
for complicated scenes, particularly those containing clouds,
mist, or ocean waves, usually leading to recognition failures
and false alarms. Besides intensity and pattern distinctness,
context can be a rich source of information about an object’s
location, which enables humans to quickly guide their attention
to regions of interest in natural scenes. Therefore, the use of
contextual information can improve the performance of ship
detection [3]. However, the current ship candidate selection
methods seldom integrate contextual information with other
cues for ship detection. Hence, their performances are easily
affected by the variation of illumination and sea surface
conditions.
In the second stage, most of the state-of-the-art algorithms

utilize powerful ship features with candidate classifiers to
discriminate ship objects from false alarms [2]–[5], [7]–[9].
In this stage, one key issue is finding efficient descriptors
to characterize the ship targets. In addition to the shape
and appearance of ships, the spatial relations of ship regions
namely topology structure characterize the symmetry of the
sides of ships and provide complementary information for ship
identification. However, the issue of how to formalize topology
structure of ship bodies is still largely open.
In contrast to the traditional methods, the novel ship

detection approach we propose aims to solve all the issues
discussed previously. Note that the proposed method focuses
on detecting ships at sea in which the land regions have
been removed using prior geographic knowledge. This letter
includes three main contributions. First, motivated by the
strong ability of humans to perceive objects before identifying
them [10], we design a novel saliency segmentation framework
with flexible integration of multiple visual cues to extract
candidate regions for subsequent classifier. Second, to the best
of our knowledge, this letter is the first to integrate intensity
distinctness, pattern distinctness, and contextual analysis into
the process of ship detection from optical satellite images.
The combination of these three image cues results in a high
detection rate regardless of variations in the detection scene.
Third, we propose a structure-local binary pattern (LBP)
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Fig. 1. Outline of saliency segmentation. We first compute intensity and
pattern distinctness, respectively, and assign different weights to these two
cues based on homogeneous degree of the scene. Then, all cues are combined
to produce an integrated cue named object map. In the end, we locate ship
candidates by using threshold segmentation of object map.

feature that applies the inherent topology structure of ship
bodies, combining local features with spatial information to
achieve a more discriminative ship description.
The remainder of this letter is organized as follows. Sec-

tion II describes the saliency segmentation process for locating
candidate regions. Section III introduces target discrimination
for suspected ships with the structure-LBP feature. Section IV
describes extensive experiments performed on panchromatic
satellite images, and Section V presents conclusions.

II. SALIENCY SEGMENTATION

In optical satellite images, ships are characterized by a
different intensity distribution from their surroundings and
unique patterns within the entire image. Therefore, integrating
intensity and pattern distinctness in the proposed method
is essential when handling complicated scenes. Moreover,
incorporating contextual information can further enhance the
detection accuracy of our method. Fig. 1 shows an overview
of saliency segmentation.

A. Intensity Distinctness

In panchromatic satellite images, ships have much lower
intensity frequencies than the sea surface background, because
the main component of the sea surface is sea water. In addition,
the intensity distribution of ships tends to be different from
that of the sea surface background. Therefore, we apply
a histogram-based contrast method to define the intensity
distinctness values for image pixels using gray statistics of
the input image [10]. Specifically, the intensity distinctness
value of a pixel Ik in the input image I is defined as follows:

S(Ik) =
n∑

j=1
f j D(gk, g j ) (1)

where gk is the intensity value of pixel Ik , n is the number of
different pixel intensities, f j is the probability of pixel inten-
sity g j in image I , and D(gk, g j ) is the Euclidean distance
between gk and g j . After calculating intensity distinctness
value of every pixel in image I , regions of distinct intensity
are highlighted in the output image S, as shown in Fig. 2(b).

B. Pattern Distinctness

Influenced by the sensor characteristics and illumination,
ship intensities are sometimes extremely similar to the inten-
sities of other types of clutter in images. Therefore, the cue of

Fig. 2. Distinctness computation. (a) Input image. (b) Saliency map for
intensity distinctness. (c) Saliency map for pattern distinctness.

intensity distinctness alone is insufficient to locate targets in
such cases. Considering the distinct patterns of ships (i.e., the
boundary between an object and its background), we apply a
pattern distinctness measure based on the phase spectrum of
a Fourier transform [11], which can identify regions that have
a unique appearance within the entire image

� = φ(F[I ]) (2)

D = g ∗ ‖F−1[ei·�]‖2 (3)

where I is the input image, F[·] and F−1[·] denote the Fourier
transform and the inverse Fourier transform, respectively,
φ[·] represents the phase spectrum calculation. g is a 2-D
Gaussian filter with a standard deviation defined as 0.9%
of the shortest boundary of the image [8], and the output
image D, shown in Fig. 2(c), is defined as a measure of pattern
distinctness.

C. Contextual Analysis

Although intensity distinctness and pattern distinctness can
contribute significantly in discriminating ship candidates in
input images, their effectiveness varies on different scenes.
To measure the effectiveness of these two cues on different
scenes, we analyze context and define an important index,
called the “surface regular index,” which is calculated as
follows:

r =
n∑

i=1
f 2i (4)

where n is the number of different pixel intensities, and fi is
the probability of pixel intensity gi .
A larger r(r ∈ (0, 1)) implies that the scene is more

homogeneous; in other words, the target intensities are rel-
atively similar to the background. Increased homogeneity
weakens the effectiveness of the intensity distinctness cue
for ship candidate selection. Therefore, compared with the
intensity distinctness cue, the pattern distinctness cue has more
discriminatory power and should be emphasized by increasing
its weight in the distinctness measure. In contrast, a smaller r
value implies that the intensity distinctness cue should be
emphasized during ship candidate selection.
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Fig. 3. Depiction of object map computation.

D. Cues Integration

The intensity and pattern distinctness computations produce
the saliency maps S and D, respectively. Each map is com-
plementary to the other. To extract regions, which are distinct
in both intensity and pattern, we normalize both maps to the
range [0, 1] and combine the two maps as follows to compute
an object map:

C = (1− r) · S + r · D. (5)

The computation process of object map is shown in Fig. 3.
The object map C quantifies the likelihood that a pixel of the
input image is part of an object. Higher C values indicate
higher possibilities of ship candidates. Then, the adaptive
segmentation method is applied to locate ship candidates
where the threshold is defined as follows:

Tc = m(C) + k · σ(C) (6)

where m and σ are, respectively, the mean and standard
deviation of the object map. Here, k is a coefficient and
empirically set to 4. Therefore, any pixel of the object map
larger than Tc is set to 1, and all other pixels are set to 0.
While this binarized object map is generated, ship candidates
can be easily extracted from their corresponding positions in
the input image.

III. SHIP TARGET DISCRIMINATION

After locating ship candidates, effective features must be
extracted to distinguish ships from false alarms. Therefore, we
adopt a two-step solution to discriminate ship targets. First,
simple shape analysis is used to eliminate obviously false
targets. Second, a structure-LBP descriptor is calculated and a
trainable classifier based on this feature descriptor is applied
to determine whether the ship candidate is a real ship.

A. Shape Analysis

In the previous stage, several connected regions are
extracted from the binarized object map by labeling the four
connected neighbors of each pixel. Some obviously false
alarms can be eliminated based on the geometric properties
of the connected regions. Because of its low computing com-
plexity and strong discriminative powers, area, compactness,
and length–width ratio are selected to eliminate these obvious
false alarms [12], [13].

1) Area: Here, the area equals the number of pixels in the
corresponding connected region. Ships have a limited area
range; consequently land, clouds, and other obviously too large
or too small false targets can be eliminated based on this
constraint.

Fig. 4. Depiction of structure-LBP feature computation.

2) Length–Width Ratio: It is defined as

Rls = Longm

Widthm
(7)

where Longm and Widthm are the length of the long and
short axes of the bounding rectangle, respectively. Most ships
are long and thin; therefore, this simple method can eliminate
false alarms that have very low ratios.

3) Compactness: Compactness measures the degree of cir-
cular similarity, and is defined as follows:

Compactness = Perimeter2

Area
(8)

where Perimeter and Area are the perimeter and area of the
corresponding connected region, respectively.

B. Structure-LBP Feature

After shape analysis, there still exist some subtle false
alarms that may have similar shape with real ships. Therefore,
we need to further analyze their appearance features for final
ship identification. In this stage, we use a new structure-LBP
feature descriptor to encode the retained candidate patches.
In order to encode these candidate patches effectively, we
resize each patch to a fixed size (40 × 40 pixels in this letter)
and then extract its structure-LBP descriptor of each resized
patch.
As shown in Fig. 4, the resized patch is divided into four

regions based on the inherent topology structure of ship bodies.
These four regions correspond to the prow, left hull, right hull,
and stern. The prow is generally v-shaped, so it is cropped as a
single region. The middle of a ship’s body is bilaterally divided
into two symmetrical regions. Considering wake interference,
the stern is cropped as a separate region. Then, the LBP feature
descriptors [14] are extracted from each region independently.
Finally, we concatenate these local descriptors into a global
descriptor named structure-LBP feature.
The structure-LBP description separately extracts LBP fea-

tures on different regions, which can facilitate the following
classifier training process. Since different regions have dif-
ferent importance for the recognition process, region-based
features provide the classifier a convenience to assign different
weights to different regions according to their importance.
Therefore, the proposed structure-LBP combining local fea-
tures with spatial information can achieve a more discrimina-
tive ship description than the original LBP.
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After feature extraction, we use the AdaBoost algo-
rithm [15] to generate the hypotheses for ships. The AdaBoost
algorithm is aimed at boosting a weak learner into an arbitrar-
ily accurate “strong” learning algorithm by maintaining a set of
weights over the training set [7]. These weights are updated
repeatedly with boosting iterations. After several iterations,
a weighted majority vote of the weak hypotheses is generated,
making the final hypothesis. What should be emphasized here
is that hypothesis generation is performed completely on the
training data set.

IV. EXPERIMENTS

In this section, we describe the extensive experiments that
were conducted to evaluate our method’s performance.

A. Data Set Description

Our experiments were performed using panchromatic satel-
lite images from Google Earth with 2-m spatial resolution and
involved two data sets: a patch training data set and a testing
data set.
The patch training data set is used to train the classifier.

In total, it contains 8000 training samples, each of which has
a size of 40 × 40 pixels. As the structure-LBP feature is
sensitive to orientation, the positive samples are divided into
eight classes based on different target orientations. Thus, we
generated eight classifiers corresponding to the eight classes,
respectively, to detect ships in different orientations.
The testing data set is used to comprehensively evaluate our

approach. It consisted of 200 images captured from various
sea surfaces under different weather conditions. These testing
images are approximately 10000 × 10000 pixels in size and
subdivided into 6000 subimages with 512 × 512 pixels in
size. All these subimages were classified into three groups:
quiet sea, textured sea, and clutter sea.

B. Parameter Selection for Our Method

In this section, the parameters used in our method are
presented.

1) Shape Criteria: With the goal of achieving a low missing
alarm rate, the thresholds of the shape criteria were set
to relatively low values. Considering the resolution of the
experimental images and our detection task, the ranges of area,
compactness, and length-width ratio were empirically set to
100 ∼ 10 000, 30 ∼ 200, and 3 ∼ 16, respectively.

2) Detecting Window: In order to improve the detecting
efficiency, our method uses a fixed-size detection window with
the same size as the training samples. So each candidate patch
will be resized to have the same size with detection window
before target discrimination. If the size of detection window
is too small, the information of the resized patch will be
insufficient, which leads to poor classification performance.
In contrast, if the size of detection window is too large, the
computational cost of feature extraction and target classifi-
cation will be too high for application in real-time systems.
For a good compromise between recognition accuracy and
efficiency, the sizes of the training samples and the detection
window were set to 40 × 40 pixels.

Fig. 5. Detected results of our method on different sea surfaces. (a) Quiet
sea with low contrast. (b) Textured sea. (c) Clutter sea.

C. Effectiveness of Our Method

In this section, we conducted several experiments to validate
the effectiveness of our method. All the experiments were
coded using MATLAB R2014 and Microsoft Visual Stu-
dio 2010, in a hardware environment consisting of a computer
with an Intel 2.4-GHz CPU and 8 GB of DDR3 RAM. Recall
and Precision are employed as performance metrics, defined
as follows:

Recall = Number of detected real ship targets

Total number of ship targets of images
(9)

Precision = Number of detected real ship targets

Number of detected targets
. (10)

1) Performance on Different Sea Surfaces: In this group
of experiments, we tested our approach on different sea
surfaces in the three subimage groups. Fig. 5 shows some
examples of the detection results. Even though some false
alarms are generated due to interference by all kinds of clutter,
our method achieves impressive performance on different sea
surfaces. Our method efficiently detects ships on backgrounds
with low contrast, strong waves, or cloud coverage. Table I
shows a comprehensive perspective of the proposed method’s
detection performance on different sea surfaces. Although both
the recall and precision of the proposed method decrease in
cluttered sea conditions compared with quiet sea conditions,
it achieves a good score and is quite robust even in complex
scenes.

2) Comparison With LBP Feature: This part presents a
performance comparison between LBP and structure-LBP
features. In these experiments, we first used the patch training
data set to train classifiers based on these two features. The
trained classifiers were then applied to the testing data set
to detect ships. For fair comparison, the coarse ship locating
described in Section II was applied with LBP and structure-
LBP features. Table I shows the results of these two features.
For the LBP feature, only one classifier was produced that
can detect ships in different orientations. For the structure-
LBP feature, we trained eight classifiers to detect ships in
different orientations. Consequently, as shown in Table I,
the structure-LBP feature consumed more computational time
than did the LBP feature. However, the structure-LBP feature
outperformed LBP feature in both precision and recall, because
it encoded not only the appearance but also the spatial relations
of ship regions in characterizing ships.

3) Comparison of Overall Detection Performances: Finally,
we compared our approach (SS) with three state-of-the-art
methods (RB [1], ST [4], and SH [8]) on recall, precision,
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TABLE I

DETECTION RESULTS

Fig. 6. Performance comparison of different state-of-the-art methods for
different target types.

and running time. The results are shown in Table I. Because
it integrates various cues into the structure-LBP descriptor,
our approach is more effective at ship detection than the
other three methods. Moreover, on average, our approach
consumes less time to process an image. To conduct in-depth
comparisons, we divided the ships into two categories in
our experiments: big ships whose length exceeded 80 pixels
and small ships whose length ranged from 20 to 80 pixels.
In addition, we evaluated the detection accuracy of the various
methods on ships with different sizes. As Fig. 6 shows, our
proposed method performs the best among the tested methods
on different target types.

V. CONCLUSION AND FUTURE WORKS

This letter presented a novel ship detection method for
optical satellite images. In this method, intensity distinctness,
pattern distinctness, and contextual analysis are integrated
into a saliency segmentation framework to locate candidate
regions. The combination of these three image cues enables
suspected targets to be extracted easily from background
clutter. Moreover, a structure-LBP feature that characterizes
the inherent topology structure of ships is proposed to dis-
criminate real ships. The experiments on real panchromatic
satellite images demonstrate that our method is not only
more computational efficient but also robust to various sea
backgrounds and targets with different sizes compared with
the state-of-the-art methods. Our future work will focus on the
two aspects: to construct more effective features to improve
the detection performance in extreme environments and to

integrate the information from multispectral remote sensing
images to extract ships near land.
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