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Abstract. The goal of ratio enhancement for hyperspectral (HS) image pansharpening is to
obtain an enhancement ratio between a simulated low-resolution panchromatic (Pan) image
and an original high-resolution Pan image. However, the simulated low-resolution Pan image
often suffers from gray-level distortion. To solve these problems, the original HS bands are
synthesized to a smaller number of reduced HS bands, then the pixels of Pan and HS images
are divided into different groups according to the linearity between the Pan band and the reduced
bands. For each pixel group, a nonnegative least-squares algorithm is utilized to calculate the
weights of reduced HS bands, so that the simulated Pan image is obtained by weighted sum-
mation of reduced HS bands. Finally, the HS image is sharpened by a ratio enhancement. The
experiments demonstrated that the proposed method had a good performance on fusion quality.
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1 Introduction

Some space-borne platforms, such as NASA’s Earth observing-1 (EO-1) satellite and China’s
first target vehicle Tiangong-1 (TG-1), simultaneously acquire both panchromatic (Pan) and
hyperspectral (HS) imagery. Due to the incoming radiation energy to imaging sensors and
the data volume collected by imaging sensors, a fundamental trade-off between spatial and spec-
tral resolutions has to be made in sensor design.1 As a consequence, Pan imagery has a high
spatial resolution with a broader wavelength range, whereas each band of HS imagery covers a
narrower spectral range with relatively poor spatial resolution.2 However, the HS imagery with
the best possible spatial resolution is more desirable to detect spectral and spatial features on the
Earth’s surface for most remote sensing applications. In order to extend the application potential
of HS imagery, an effective image fusion technique is needed to sharpen HS imagery by injecting
the geometric detail of Pan imagery to HS imagery.

To date, there have been only a few methods focused on Pan and HS image fusions (see
Ref. 3), and most of them are model-based methods: (1) the multiresolution analysis model
combines both nonlinear dimensionality reduction and multiresolution analysis fusion to
enhance the spatial resolution of a HS image;4,5 (2) the variational model regards the spatial
and spectral quality balance of fused images to be an energy minimization problem;6,7 and
(3) the nonnegative matrix factorization (NMF)-based model decomposes the HS image into
basis and weight, then sharpens the basis with the Pan image.8–10 In general, these methods
were shown to achieve a good performance on spectral quality, but the spatial quality often
cannot fulfill user expectation. Moreover, because iterative algorithms are involved in the imple-
mentations, these methods are computationally expensive in applications.

*Address all correspondence to: Bo Li, E-mail: boli@buaa.edu.cn

1931-3195/2017/$25.00 © 2017 SPIE

Journal of Applied Remote Sensing 015017-1 Jan–Mar 2017 • Vol. 11(1)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/09/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



On the other hand, a large number of pansharpening techniques are directly designed for
multispectral (MS) images rather than HS images.11–27 According to the differences of original
ideas, most of these methods can be divided into three categories, i.e., component substitution
(CS) methods, spatial-frequency correction (SFC) methods, and ratioing methods. The CS
methods11–16 use matrix transformations, such as the intensity hue saturation, the principal
component analysis, or the Gram–Schmidt (GS) transformations, to project the gray values of
an MS image into a new space, and then totally or partially replace a structural component of
MS bands in the new space by Pan image in order to sharpen the MS bands. The SFC
methods17–23 use spatial-frequency related transformations, such as wavelet, contourlet, or
Laplace transformations, to decompose Pan and MS images into different spatial-frequency
scales. For each MS band, the high-frequency components are replaced with components
from the Pan image. The fused images are then obtained via an inverse transformation of
the modified spectra. The ratioing methods24–27 utilize image division to obtain an enhancement
ratio, and then multiply the ratio with an MS image to obtain a sharpened MS image.

In principle, the three categories of fusion methods inherited from MS pansharpening may be
extended to sharpen HS imagery. However, HS imagery pansharpening is more difficult than that
of MS imagery. Generally, extending SFC and CS methods to pansharpen k HS images will
result in a considerable increase of the computational load and complexity. First, because of
the huge number of HS bands, it is too complicated for SFC methods to sharpen HS images
based on local context.28 Second, due to the fact that too many HS bands are involved in a
multiple regression16 to calculate the weights of HS bands, it is difficult for CS methods to syn-
thesize a simulated low-resolution Pan band. Third, and more importantly, the CS methods and
SFC methods often blur the spatial details of sharpened images due to the two key problems in
applications, i.e., “small miss-registration” and “size difference” problems.29 Fortunately,
ratioing methods have a good tolerance to the two problems. Therefore, ratio enhancement
is extended to pansharpen HS images in this paper.

In general, the existing ratio enhancement methods had color distortion phenomenon while
processing HS images. The causes of this problem are summarized as follows: (i) the relation that
exists between Pan and HS bands is nonlinear; (ii) regional variations of Pan and HS images
influence the local accuracy of synthesized Pan images; (iii) the multiple linear regression often
fails to obtain the accurate weights of HS bands due to too many HS bands; and (iv) the absence
of nonnegative constraint while calculating the weights of HS bands makes the synthesized
Pan band physically unreliable. The existing methods did not consider the abovementioned
problems. Therefore, it cannot be directly used to pansharpen HS images.

To tackle the color distortion problem of HS image pansharpening, an improved ratio
enhancement is proposed in this paper. The main contributions of this paper are as follows:
first, the HS bands are greatly reduced to a smaller number of reduced bands by an average
of neighbor bands; second, according to the linearity between the Pan band and the reduced
bands, the pixels of Pan and HS images are classified into different groups; third, for each
pixel group, the nonnegative least-squares algorithm30 is utilized to calculate the weights of
reduced HS bands, so that the simulated Pan image can be obtained by weighted summation
of reduced HS bands, and an improved enhancement ratio is obtained by image division between
the Pan image and the synthesized Pan image.

The remainder of this paper is organized as follows: the proposed method is presented in the
next section. In Sec. 3, the experiments that carried on the Pan and HS images acquired by EO-1
and TG-1 satellites are utilized to validate and analyze the performance of the proposed method.
Thereafter, the limitations of the proposed method are discussed in Sec. 4. Finally, conclusions
are drawn from the experiments regarding the capacity of spectral and spatial fidelities.

2 Proposed Method

The proposed method is designed to fuse the Pan and HS images that are simultaneously
acquired by satellite sensors. Moreover, the spectral range of the Pan images is covered by
those of the HS bands. Without this assumption, the qualified low-resolution Pan images cannot
be synthesized from HS bands. In this section, first, the HS bands are reduced by the average of
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neighbor bands. Then, the pixel clustering is performed on the reduced HS bands. Thereafter, the
simulated Pan images are synthesized from reduced and classified HS bands, and finally the HS
images are pansharpened by ratio enhancement, see Fig. 1.

2.1 Reducing HS Bands

The major reason for reducing the HS bands is that the multiple linear regression often fails to
obtain the accurate weights of HS bands while there are too many HS bands. Furthermore, the
weight calculation will be time consuming if a huge number of bands is involved in multiple
linear regression. Therefore, reduction in spectral dimensionality is first applied to the HS bands
before synthesizing low-resolution Pan images. To accomplish this task, we have considered
the following aspects: (i) select the HS bands involved in reduction, (ii) design the method
for reducing the HS bands, and (iii) determine the number of the HS bands after band reduction.

In general, an HS imaging sensor collects images with a spectral interval of 10 nm in
the visible to short-wave infrared (SWIR) wavelength ranges, such that an HS data cube has
hundreds of spectral bands. However, as pointed out in Ref. 26, only the HS bands whose wave-
length ranges are overlapped by that of the Pan band (called overlapped bands) are included to
synthesize a low-resolution Pan image. The reason for the selection of the overlapped bands is
to generate a simulated Pan image whose pixel value can perfectly approximate that of the
high-resolution Pan image. Hence, the sharpened image will obtain good spectral fidelity.

Differently from MS sensors, HS sensors capture narrow spectral bands over a continuous
spectral range. In this situation, the pixel values between neighbor HS bands are very similar.
This implies that the neighbor HS bands with similar pixel values have similar weight to the
contribution of Pan synthesis. Consequently, the number of HS bands can be reduced to a smaller
number of synthesized bands by an average of neighbor bands. Assume that the overlapped
bands are divided into S groups, and each group has α bands. Generally, the multiple linear
regression can reliably obtain the weights of HS bands when 7 ≤ S ≤ 10 and 3 ≤ α ≤ 5. For
ease of understanding, the k’th group of HS bands is written as bk;1; bk;2; : : : bk;α, where
1 ≤ k ≤ S. Then, the k’th reduced band (denoted by b̄k) for the k’th group is expressed as

EQ-TARGET;temp:intralink-;e001;116;170dk ¼
1

α

Xα
t¼1

bk;t: (1)

In most cases, the distribution of pixel values varies greatly between the reduced HS bands
and the Pan band. This difference makes the reduced HS bands unequally contribute to the
synthesized Pan image, and consequently make the enhancement ratio fail to represent the
spectral characteristics of the original HS image.26 Therefore, it is necessary to adjust the gray
value of the Pan band and the reduced HS bands before the construction of the synthesized

Fig. 1 The processing chart of the proposed method.
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Pan image. In the proposed method, the means and standard deviations of the Pan band and the
reduced HS bands are, respectively, adjusted to the same values, so that every reduced HS band
has a balanced contribution to the synthesized Pan image.27 Before adjusting pixel values, the
reduced HS image is extended to the same ground sampling distance (GSD) as the Pan image by
bilinear interpolation. Assume that the Pan band is the (Sþ 1)’th band, whereas the other S
bands are the reduced HS bands. This adjusting scheme is listed as follows:

• Step 1: Calculate the means (Ak), the standard deviations (Dk), them’th percentile (Bk) and
the (100 −m)’th percentile (Ek) of the k’th band, where k ¼ 1;2; : : : ; Sþ 1, and m can be
set to 1 or 2, though m ¼ 1 is the best option.

• Step 2: Compute the common mean (A) and standard deviation (D) according to the
following equations:

EQ-TARGET;temp:intralink-;sec2.1;116;597

A ¼ ½maxðB1 þ E1; : : : ; BSþ1 þ ESþ1Þ�∕2
D ¼ maxðD1; : : : ; DSþ1Þð1þm∕100Þ

• Step 3: Adjust the pixel values of the Sþ 1 bands by Eq. (2), where xk is the original pixel
value of the k’th band, and yk is the adjusted value.

EQ-TARGET;temp:intralink-;e002;116;522yk ¼ Aþ D
Dk ðxk − AkÞ: (2)

The adjusted Pan band is denoted by P̄, and the adjusted HS bands are denoted by b̄k, where
1 ≤ k ≤ S. Here, the reduced HS bands and the Pan band are simultaneously adjusted. The main
reason is to avoid introducing an offset term in the synthesized Pan band. Generally, the syn-
thesized Pan band is often regarded as a summation of weighted HS bands and an offset term.16

However, it is difficult to calculate the accurate value of the offset term while there are too many
HS bands involved, see Eq. (5). Therefore, the means and standard deviations of the Pan band
and the reduced HS bands are adjusted to the same values in the proposed scheme.

2.2 Pixel Clustering

Because the relation that exists between Pan and HS bands is not linear, moreover, regional
variations of Pan and HS images locally influence the accuracy of synthesized Pan images,
the low-resolution Pan image with different land covers cannot be globally approximated by
a weighted summation of reduced HS bands. To solve this problem, the Pan and reduced
HS images are classified into different pixel groups by a k-means algorithm. Note that some
existing methods have utilized context-driven schemes, which are based on local context of
the images being fused, to eliminate the effect of regional variations. However, it is difficult
to enumerate all the contexts in a real-world application. Therefore, color distortion emerges
in the case that the contexts are different from the assumption of context-driven schemes.

In order to solve these problems, the images are classified according to the correlation
between the adjusted Pan band and the adjusted HS bands. The reason for the selection of
a correlation-based clustering is that the good correlation of the pixels within each class
indicates a good linear relation between the adjusted Pan band and the adjusted HS bands,
so that the synthesized Pan image can be obtained by a weighted summation of adjusted
HS bands. In this situation, all the pixels that are clustered by correlation can consequently
use the same weight vector while generating the synthesized Pan image. Let vj ¼
½b̄1ðjÞ; b̄2ðjÞ; : : : ; b̄SðjÞ; PðjÞ� be the pixel value of the adjusted Pan and HS bands, where j
is the pixel index. In addition, let μt be the component-wise mean of the pixels in the category
Ct. Then the images are divided by the k-means algorithm that aims at minimizing the objective
function as

EQ-TARGET;temp:intralink-;e003;116;107F ¼
XN
t¼1

X
j∈Ct

distðvj; CtÞ ¼
XN
t¼1

X
j∈Ct

�
1 −

ðvj − v̄jÞðμt − μ̄tÞ
jvj − v̄jjjμt − μ̄tj

�
; (3)
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where v̄j and μ̄t are, respectively, the means of the vectors vj and μt for centering and normal-
izing those vectors to zero mean and unit standard deviation, and N is the number of classified
categories.

Note that N is a key parameter for the proposed method to obtain a good spectral fidelity.
We have performed the experiments using the data sets with different land covers. The data sets
included five pairs of Pan and HS images from the EO-1 satellite and five pairs of Pan and
HS images from the TG-1 vehicle platform. The following results were obtained from this
experiment: (i) when N ¼ 2, the proposed method was capable of synthesizing the simulated
Pan images with a relatively fast convergence of k-means algorithm, and (ii) when N > 2,
there are too many small pixel blocks in each pixel group. In this situation, the convergence
of the k-means algorithm was much slower. Consequently, N is set to be a constant, i.e., 2,
in implementation of this method.

2.3 Low-Resolution Pan Image Synthesis

As shown in Sec. 2.1, we have S adjusted HS bands. We denote the k’th adjusted band in
category Ct with pixel index j as b̄kðjÞjj ∈ Ct and the weight of the k’th adjusted band in cat-
egory Ct as ϕk

t , then the adjusted Pan image (P̄) for any pixel in category Ct can be expressed as

EQ-TARGET;temp:intralink-;e004;116;516P̄t
j ≈

XS
k¼1

ϕk
t b̄kðjÞjj ∈ Ct: (4)

Because the adjusted Pan band and the adjusted HS bands are adjusted to the same pixel value
range in Sec. 2.1, there is no offset term in Eq. (4).

As shown in Ref. 6, the adjusted Pan image is regarded as a linear response of the adjusted
HS bands. To be physically realizable, the weight coefficients of adjusted HS bands should
be nonnegative. However, the nonnegative constraint is often neglected in the existing
methods.16,27 Any meaningful estimate of ϕk

t must comply with nonnegative constraints that
make it physically realizable. Therefore, we formulate the nonnegative least-squares problem as

EQ-TARGET;temp:intralink-;e005;116;381Φ̂t ¼ arg min
ϕt>0

����
X
j∈Ct

�
Pt
j −

XS
k¼1

ϕk
t b̄kðjÞ

�����; (5)

where Φt ¼ ½ϕ1
t ; : : : ;ϕS

t � and Φ̂t ¼ ½Φ̂1
t ; : : : ; Φ̂

S
t � are the estimated weight coefficients.

For high computational efficiency, the algorithm30 is used to solve the nonnegative
least-squares problem. In the category Ct, the synthesized Pan image is obtained by a weighted
summation of the adjusted HS bands, see Eq. (6). The whole synthesized Pan image (P̂) is then
formed by putting the synthesized image blocks of all the categories together.

EQ-TARGET;temp:intralink-;e006;116;266P̂t
j ¼

XS
k¼1

ϕ̂k
t b̄kðjÞjj ∈ Ct: (6)

It should be noted that the synthesized Pan image can also be introduced into the GS
method15 as the simulated Pan image. However, the GS method is less tolerant to the size differ-
ence problem than ratio enhancement.29 Hence, the ratio enhancement scheme is developed in
Sec. 2.4.

2.4 Ratio Enhancement of HS bands

After obtaining the synthesized Pan image, the HS bands can be sharpened by multiplying
an enhancement ratio, in which the ratio (R) is obtained by image division between the adjusted
Pan image (P̄) and the synthesized low-resolution image (P̂), see Eq. (7). The formula for the
sharpening of the k’th HS bands is given in Eq. (8), where bk and Hk are the k’th HS band and
its sharpened result, respectively, whereas ðx; yÞ is the pixel coordinate. Note that bk is the
original HS band,
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EQ-TARGET;temp:intralink-;e007;116;735Rðx; yÞ ¼ P̄ðx; yÞ∕P̂ðx; yÞ; (7)

EQ-TARGET;temp:intralink-;e008;116;712Hkðx; yÞ ¼ Rðx; yÞbkðx; yÞ: (8)

In this step, although GS transformation can also be employed to perform sharpening, ratio
enhancement is the best choice. The reason is that (i) ratio enhancement is much simpler
and faster than GS transformation, and (ii) ratio enhancement is more tolerant to small
miss-registration and the size difference problem.

3 Experimental Data and Measures

3.1 Data Sets

To validate the performance of the proposed method, five pairs of Pan and HS images from the EO-
1 satellite and another five pairs of Pan and HS images from the TG-1 platform were used in our
experiments. These images have a large coverage of spectral signatures as well as very hetero-
geneous structures, such as houses, roads, soil, water bodies, and vegetation. The different land
covers are useful and necessary to obtain an objective and comprehensive understanding of a pan-
sharpening method. For the purpose of clear visualization, only small subsets of experimental
images are shown in the demonstrations, see the images in Figs. 2(a) and 2(b). In order to give
a convincing demonstration, the subsets that have a variety of land covers are displayed in this paper.

A brief summary of the experimental data sets is listed in Table 1. The EO-1 satellite has two
HS sensors; the first sensor detects the wavelength from 400 to 1000 nm of the visible and near

Fig. 2 Subsets (300 × 320 pixels) of the Pan images used in the experiments. (a) Image from
EO-1 data sets and (b) image from TG-1 data sets.

Table 1 An overview of the experimental data sets.

EO-1 TG-1

HS Pan HS (VNIR) Pan

Wavelength (μm) 0.40 to 2.50 0.48 to 0.69 0.40 to 1.00 0.50 to 0.80

GSD (m) 30 10 10 5

Number of bands 242 1 80 1

Study area San Francisco, Beijing San Francisco, Beijing

Digitization 12 bits 12 bits
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infrared (VNIR) range, whereas the second sensor covers the wavelength from 900 to 2500 nm
of the SWIR range. Spectral bands 1 to 70 are collected from the VNIR and bands 71 to 242 are
collected from the SWIR. To reduce the VNIR/SWIR overlap region, some of these spectral
channels are not calibrated and are set to zero; therefore, they were not included in the experi-
ments. Similar to the EO-1 satellite, the TG-1 platform also has VNIR and SWIR sensors.
However, the HS images of the SWIR sensors are not available in the experiments. Due to
low signal for some channels, only the HS bands 11 to 70 from the TG-1 platform are well
calibrated, and the 60 bands are used in the experiments. Before the experiments, the Pan
and HS images were coregistered, and then each pair of data sets was cut to the same sizes,
i.e., covering an area of 6000 × 6000 m2.

3.2 Measures of Evaluation

In the experiments, the ground truth of high-resolution HS images is not available. Therefore, we
have chosen two different strategies to make a quantitative evaluation. First, we have performed
pansharpening on the down-sampled Pan and HS images, and we have then assessed the fusion
quality by using the original HS images as Ref. 31. However, the assessments drawn on the
down-sampled images may not match user expectation and the concept of quality at full
scale.2 Second, assessments without reference, which are directly obtained on the full scale
sharpened images, were consequently included as a necessary complement.32

In this paper, the quantitative assessment with reference includes spectral angle mapper
(SAM) and ERGAS, whereas the evaluation without reference involves Dλ, DS, and quality
with no reference (QNR). A brief description of these measures is listed as follows:

• SAM33 is utilized to evaluate the spectral fidelity of sharpened HS images. It calculates the
spectral angles between the two spectra xrði; jÞ and xfði; jÞ, where xrði; jÞ and xfði; jÞ are
the spectra from reference and sharpened images, respectively, and ði; jÞ is the pixel loca-
tion. The measure is calculated as

EQ-TARGET;temp:intralink-;sec3.2;116;405SAM ≜ arccos

�
xfði; jÞ · xrði; jÞ
jxfði; jÞjjxrði; jÞj

�

A zero angle represents a perfect match of two spectra. In our experimental analysis,
SAM is measured by degrees and is averaged for all pixels to yield a global score.

• ERGAS34 is the French acronym for relative dimensionless global error in synthesis. It
evaluates spectral fidelity through root-mean-square error (RMSE) between reference
and sharpened HS bands. Hence, the lower the ERGAS value, the better the spectral quality
of the merged images. The indicator is defined as

EQ-TARGET;temp:intralink-;sec3.2;116;288ERGAS ≜ 100r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

RMSE2ðiÞ
MEAN2ðiÞ

vuut ;

where r is the spatial resolution ratio between Pan and HS images,N is the number of fused
HS bands, andMEANðiÞ is the mean radiance of the i’th spectral band, whereas RMSEðiÞ
is the RMSE between the i’th reference band and the i’th fused band. As suggested in
Ref. 34, the ERGAS value is acceptable when ERGAS < 3.

• Dλ
35 is a measure for spectral fidelity assessment. It is derived from the difference of inter-

band Q values36 between the fused HS bands and the original HS bands. Let Fi and Bi

denote the i’th bands of fused images and original HS images, respectively, then Dλ is
written as

EQ-TARGET;temp:intralink-;sec3.2;116;137Dλ ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N2 − N

XN
i¼1

XN
j¼iþ1

jQðFi; FjÞ −QðBi; BjÞj
vuut ;

where N is the number of fused HS bands. The Dλ measure takes values in [0, 1] with zero
being the best value.
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• DS
35 is a measure for spatial fidelity assessment. Similar to Dλ and Ds is also derived

from the difference of interband Q values.36 Let P denote a Pan image and P̃ denote
a down-sampled version of P, then Ds can be expressed as

EQ-TARGET;temp:intralink-;sec3.2;116;379DS ≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK
i¼1

jQðFi; PÞ −QðMi; P̃Þj
vuut :

The Ds measure also takes values in [0, 1] with zero being the best value.
• QNR35 is a combination ofDλ andDs measures to give an overall assessment of spatial and

spectral fidelity. This measure is given by

EQ-TARGET;temp:intralink-;sec3.2;116;285QNR ≜ ð1 −DλÞð1 −DSÞ:

QNR takes values in [0, 1] with one being the best value. The main advantage of the QNR
index is that the overall evaluation of a fusion product can be assessed at the full scale of a Pan
image without reference.

The evaluation of the fusion quality is a complicated work.37 The quantitative assessment of
average evaluation is given in this paper, see Tables 2 and 3. In addition to quantitative assess-
ment, the visual evaluation of sharpened images was also used in the experimental analysis.
Because all experimental images are digitalized as 16 bit/pixel, to provide a convincing visual
evaluation and analysis result, these images were displayed by the same color mapping tables,
which map 16 to 8 bit pixels for visualization.

4 Experimental Results

In order to validate the proposed method, an improved Gram–Schmidt (IGS) method16 was com-
pared to the proposed method. The IGS method is an improvement of the GS method15 and has
demonstrated good spectral performance for Pan and MS image fusion. In addition, three

Table 2 Average evaluation of sharpened EO-1 HS images produced by different methods.

SAM ERGAS Dλ DS QNR

IGS 4.936 5.91 0.218 0.113 0.694

VM 4.237 5.13 0.196 0.163 0.673

Proposed 2.180 2.69 0.101 0.095 0.814

MABR 4.218 5.51 0.193 0.111 0.717

NMF 2.254 3.10 0.125 0.156 0.739

Note: The best experimental results are labeled by bold font.

Table 3 Average evaluation of sharpened TG-1 HS images produced by different methods.

SAM ERGAS Dλ DS QNR

IGS 3.811 5.17 0.263 0.101 0.663

VM 2.775 3.90 0.117 0.238 0.672

Proposed 2.281 2.72 0.091 0.083 0.834

MABR 3.170 4.16 0.126 0.110 0.778

NMF 2.397 3.66 0.098 0.261 0.667

Note: The best experimental results are labelled by bold font.
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recently developed methods, i.e., the similarity measure-based variational method7 (called VM),
the multiresolution analysis and nonlinear PCA band reduction-based method4 (called MABR
method), and the sparse constrained NMF-based method9 (called NMF method), were also
included for experimental analysis. The VM method, MABR method, and NMF method had
shown a good performance for HS image pansharpening. A brief description of the four methods
and their parameters is given as follows:

1. IGS method: IGS fusion starts with the synthesis of a low-resolution Pan image by
multiple regression of HS and Pan images. Then, the GS transformation is applied to
the synthesized Pan and the HS bands. Thereafter, the first transformed component is
replaced by a high-resolution Pan image. Finally, the sharpened HS bands are generated
by an inverse transformation. To avoid the inherent drawbacks, the HS bands whose
wavelength ranges are overlapped by that of the Pan band were included to synthesize
a low-resolution Pan image in our experiments.

2. VM method: In this method, HS image pansharpening is regarded as an optimization
problem, in which a VM was developed under the constraint of spatial and spectral
similarity between sharpened images and original images. In the experiments, the
distance-based similarity measure was used, and all the parameters of this measure
were set to 1, except η ¼ 0.2 and ζ ¼ 2.

3. MABR method: This method introduces dimensionality reduction of HS images through
the nonlinear generalization of standard principal component analysis. The nonlinear
principal components were obtained by an auto-associative neural network. The fused
HS images were obtained by fusing nonlinear principal components with the PAN
images instead of the HS bands.

4. NMF method: In this method, the NMF decomposes the HS image into basis and weight,
then sharpens the basis with the Pan image, and finally generates the sharpened HS
image by a sparse constrained NMF fusion model. In the experiments, the parameters
for the degree of sparsity, sharpening, and spectral preservation are set to 0.01, 0.4, and
0.01, respectively.

4.1 EO-1 Fusion Results

Figure 3 is a subset of fusion results of EO-1 data sets, which were acquired over San Francisco
in July 23, 2012. The GSD of all the fused images in Fig. 3 is 10 m. To obtain color images of
the scene that represent true RGB and color infrared, the bands 16, 23, 29, and 50 were selected.
The bands 29, 23, and 16 are used in true RGB display, whereas the bands 50, 23, and 16 are
used in color infrared display. In the visual analysis, different band combinations are necessary
for subjective evaluation. The HS images of Figs. 3(a) and 3(g) are used as visual reference for
evaluating spectral quality, whereas the Pan image of Fig. 2(a) is used as visual reference for
evaluating spatial quality.

In true RGB display, it was found that (i) the NMF method and the proposed method had a
good performance on spectral fidelity; however, the NMF method produced some spatial arti-
facts in fused images, and (ii) the IGSmethod, MABR method, and VM method had different
color distortions in local regions. The color distortion in the IGS method is mainly because
regional variations of Pan and HS images influence the local accuracy of a synthesized Pan
image. Because a clustering strategy was designed to tackle this problem, the proposed method
avoids color distortion in local regions. In color infrared display, all the methods showed good
results on spectral fidelity, but the spatial quality of VM and MABR methods is not as good as
that of the other methods.

In addition, quantitative assessments were also provided by calculating the quality measures
on the five pairs of EO-1 images. The scores of different methods are listed in Table 2. The GSD
of the sharpened HS images for SAM and ERGAS calculations is 30 m, whereas the GSD of the
sharpened HS images for Dλ, DS, and QNR calculations is 10 m. Each score is an average of
the quantities obtained from the five pairs of images. In general, these scores are consistent with
the visual evaluation. From Table 2, we can find that the scores of the proposed method were
better than those of other methods, and the proposed method obtained the best scores for all
the measures.
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4.2 TG-1 Fusion Results

In order to evaluate the fusion algorithms for different sensors, TG-1 data sets were used in the
experimental analysis. Because the spatial resolution of TG-1 data sets is higher than that of EO-
1 data sets, it is better to give a visual evaluation on the performance of spatial quality. Figure 4
shows a subset of fusion results of TG-1 data sets, which were acquired over Beijing in March

Fig. 3 Subsets (300 × 320 pixels) of the sharpened EO-1 data sets produced by different
methods. (a) HS image, (b) IGS method, (c) VM method, (d) proposed method, (e) MABR method,
(f) NMF method, (g) HS image, (h) IGS method, (i) VM method, (j) proposed method, (k) MABR
method, and (l) NMF method.
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29, 2012. The GSD of all the fused images in Fig. 4 is 5 m. The bands 8, 17, 24, and 30 were
selected for visual comparison of spectral fidelity, see the original HS images in Figs. 4(a) and
4(g). In addition, the original Pan image is shown in Fig. 2(b), which is used as visual reference
for spatial fidelity.

For the two different band combinations in Fig. 4, it was found that NMF and MABR
methods had good performance on spectral fidelity, but had poor performance on spatial quality,

Fig. 4 Subsets (300 × 320 pixels) of the sharpened TG-1 data sets produced by different meth-
ods. (a) HS image, (b) IGS method, (c) VM method, (d) proposed method, (e) MABR method,
(f) NMF method, (g) HS image, (h) IGS method, (i) VM method, (j) proposed method,
(k) MABR method, and (l) NMF method.
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see Figs. 4(c), 4(f), 4(i), and 4(l). IGS and IR methods had visible color distortion in some local
areas, but the spatial quality of the fused images was good, see Figs. 4(b), 4(e), 4(h), and 4(k).
The proposed method showed good performance on both spectral and spatial qualities.

Furthermore, quantitative assessments were also provided in Table 3, in which the scores of
different methods are mean values of the measures obtained from the five pairs of TG-1 images.
The GSD of the sharpened HS images for SAM and ERGAS calculations is 10 m, whereas the
GSD of the sharpened HS images for Dλ, DS, and QNR calculations is 5 m. Generally, these
scores are also consistent with the visual evaluation. From Table 3, it was observed that the
scores of the proposed method were better than those of other methods, especially for the scores
of spatial quality measure Ds. For both EO-1 and TG-1 data sets, the overall performance of
the proposed method has exceeded other methods. However, there are some limitations for the
proposed method, and we discuss these limitations in Sec. 5.

4.3 Discussion

Because the low-resolution Pan image is synthesized through the weighted summation of HS
bands, the proposed method is limited to the fusion of simultaneously acquired Pan and HS
images. Practically, due to the fact that most of the images are off-nadir and precise coregistration
of high-resolution images from different viewing angles is still an unsolved technical problem, it
may not be viable to fuse Pan and HS images from two high-resolution satellites.35 On the other
hand, the proposed method is also confined by the overlap constraint, that is, the wavelength
range of HS images should cover that of the Pan image. Otherwise, it is physically unreasonable
to synthesize a low-resolution Pan image by the weighted summation of HS bands. Fortunately,
the Pan and HS sensors that have been carried on the same space platform are designed to meet
the overlap constraint in most cases.

In addition, we also found that the computational cost of the proposed method was a little
greater than that of the IGS method, but was lower than that of the NMF, MABR, and VM
methods. We tested these methods on a high-performance personal computer equipped with
an Intel 3.20-GHz central processing unit and 16-GB memory. Table 4 gives the average running
time for these methods to pansharpen the EO-1 and TG-1 data sets. The computational efficiency
of the proposed method is still needed to improve in future research.

5 Concluding Remarks

This paper has presented a ratio enhancement method for HS image pansharpening, in which the
ratio is calculated by image division between a simulated low-resolution Pan image and an origi-
nal high-resolution Pan image. In the calculation of enhancement ratio, we have developed a
scheme that includes the band reduction, image clustering, and nonnegative constraint strategy
to tackle the following problems: i.e., nonlinear relation between Pan and HS bands, regional
variations of the image being fused, failure of weight calculation due to too many HS bands, and
nonnegative restriction of band weights. The experiments on EO-1 and TG-1 data sets demon-
strated that the proposed method had good spatial and spectral fidelities.

Acknowledgments

The authors sincerely thank the anonymous referees for their constructive comments. The EO-1
datasets were provided by the United States Geological Survey (http://earthexplorer.usgs.gov),
whereas the TG-1 data sets were provided by China Manned Space Agency. This work was
supported by the National Natural Science Foundation of China (No. 61672076).

Table 4 The average running time (s) for different methods.

IGS MABR VM NMF Proposed

EO-1 5.22 14.78 18.21 20.11 8.15

TG-1 4.37 14.25 16.67 23.25 7.23

Xu et al.: Hyperspectral and panchromatic image fusion through an improved ratio enhancement

Journal of Applied Remote Sensing 015017-12 Jan–Mar 2017 • Vol. 11(1)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/09/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



References

1. P. Aplin, P. M. Atkinson, and P. J. Curran, “Fine spatial resolution satellite sensors for
the next decade,” Int. J. Remote Sens. 18(18), 3873–3881 (1997).

2. C. Thomas et al., “Synthesis of multispectral images to high spatial resolution: a critical
review of fusion methods based on remote sensing physics,” IEEE Trans. Geosci. Remote
Sens. 46(5), 1301–1312 (2008).

3. L. Loncan et al., “Hyperspectral pansharpening: a review,” IEEE Geosci. Remote Sens. Mag.
3(3), 27–46 (2015).

4. G. A. Licciardi et al., “Fusion of hyperspectral and panchromatic images using multireso-
lution analysis and nonlinear PCA band reduction,” EURASIP J. Adv. Signal Process.
2012(1), 1–17 (2012).

5. G. Vivone et al., “Multiresolution analysis and component substitution techniques for
hyperspectral pansharpening,” in Proc. IEEE Int. Geoscience Remote Sensing Symp.,
pp. 2649–2652 (2014).

6. M. Moeller, T. Wittman, and A. L. Bertozzi, “Avariational approach to hyperspectral image
fusion,” Proc. SPIE 7334, 73341E (2009).

7. Z. Shi, Z. An, and Z. Jiang, “Hyperspectral image fusion by the similarity measure based
variational method,” Opt. Eng. 50(7), 077006 (2011).

8. Z. An and Z. Shi, “Hyperspectral image fusion by multiplication of spectral constraint and
NMF,” Optik 125(13), 3150–3158 (2014).

9. Q. Chen, Z. Shi, and Z. An, “Hyperspectral image fusion based on sparse constraint NMF,”
Optik 125(2), 832–838 (2014).

10. O. Berné et al., “Non-negative matrix factorization pansharpening of hyperspectral data: an
application to mid-infrared astronomy,” in Proc. IEEE GRSS Workshop Hyperspectral
Image Signal Processing: Evolution Remote Sensing, pp. 1–4 (2010).

11. T.-M. Tu et al., “A fast intensityhue-saturation fusion technique with spectral adjustment for
IKONOS imagery,” IEEE Geosci. Remote Sens. Lett. 1(4), 309–312 (2004).

12. M. Choi, “A new intensity-hue-saturation fusion approach to image fusion with a tradeoff
parameter,” IEEE Trans. Geosci. Remote Sens. 44(6), 1672–1682 (2006).

13. T.-M. Tu et al., “Best tradeoff for high-resolution image fusion to preserve spatial details and
minimize color distortion,” IEEE Geosci. Remote Sens. Lett. 4(2), 302–306 (2007).

14. V. P. Shah, N. H. Younan, and R. L. King, “An efficient pan-sharpening method via a
combined adaptive PCA approach and contourlets,” IEEE Trans. Geosci. Remote Sens.
46(5), 1323–1335 (2008).

15. C. A. Laben and B. V. Brower, “Process for enhancing the spatial resolution of multispectral
imagery using pan-sharpening,” U.S. Patent 6,011,875 (2000).

16. B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution pansharpening
through multivariate regression of MS +Pan data,” IEEE Trans. Geosci. Remote Sens.
45(10), 3230–3239 (2007).

17. T. Ranchin and L. Wald, “Fusion of high spatial and spectral resolution images: the ARSIS
concept and its implementation,” Photogramm. Eng. Remote Sens. 66(1), 49–61 (2000).

18. B. Aiazzi et al., “Context-driven fusion of high spatial and spectral resolution images
based on oversampled multiresolution analysis,” IEEE Trans. Geosci. Remote Sens. 40(10),
2300–2312 (2002).

19. B. Jin, G. Kim, and N. Cho, “Wavelet-domain satellite image fusion based on a generalized
fusion equation,” J. Appl. Remote Sens. 8(1), 080599 (2014).

20. U. G. Gangkofner, P. S. Pradhan, and D. W. Holcomb, “Optimizing the high-pass filter addi-
tion technique for image fusion,” Photogramm. Eng. Remote Sens. 74(9), 1107–1118 (2008).

21. Q. Xu et al., “High-fidelity component substitution pansharpening by the fitting of substi-
tution data,” IEEE Trans. Geosci. Remote Sens. 52(11), 7380–7392 (2014).

22. S. Li, X. Kang, and J. Hu, “Image fusion with guided filtering,” IEEE Trans. Image Process.
22(7), 2600–2610 (2013).

23. X. Jin et al., “Remote sensing image fusion method in cielab color space using nonsub-
sampled shearlet transform and pulse coupled neural networks,” J. Appl. Remote Sens.
10(2), 025023 (2016).

Xu et al.: Hyperspectral and panchromatic image fusion through an improved ratio enhancement

Journal of Applied Remote Sensing 015017-13 Jan–Mar 2017 • Vol. 11(1)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/09/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



24. A. R. Gillespie, A. B. Kahle, and R. E. Walker, “Color enhancement of highly correlated
images. II. Channel ratio and chromaticity transformation techniques,” Remote Sens.
Environ. 22, 343–365 (1987).

25. Y. Zhang, “A new merging method and its spectral and spatial effects,” Int. J. Remote Sens.
20(10), 2003–2014 (1999).

26. Y. Zhang, “System and method for image fusion,” U.S. Patent 7,340,099 (2008).
27. Q. Xu et al., “Pansharpening using regression of classified MS and Pan image to reduce

color distortion,” IEEE Geosci. Remote Sens. Lett. 12(1), 1–5 (2014).
28. B. Aiazzi et al., “Pansharpening of hyperspectral images: a critical analysis of requirements

and assessment on simulated PRISMA data,” Proc. SPIE 8892, 889203 (2013).
29. Q. Xu, Y. Zhang, and B. Li, “Recent advances in pansharpening and key problems in

applications,” Int. J. Data Image Fusion 5(3), 175–195 (2014).
30. V. Franc, V. Hlaváč, and M. Navara, “Sequential coordinate-wise algorithm for the non-

negative least squares problem,” in 11th Int. Conf. Computer Analysis of Images and
Patterns, Versailles, France, pp. 407–414 (2005).

31. L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of different spatial
resolutions: asessing the quality of resulting images,” Photogramm. Eng. Remote Sens.
63(6), 691–699 (1997).

32. Y. Zhang, “Understanding image fusion,” Photogramm. Eng. Remote Sens. 70(6), 657–661
(2004).

33. R. H. Yuhas, A. F. H. Goetz, and J.W. Boardman, “Discrimination among semi-arid land-
scape endmembers using the spectral angle mapper (SAM) algorithm,” in Proc. Summaries
3rd Annual JPL Airborne Geoscience Workshop, pp. 147–149 (1992).

34. L. Wald, “Quality of high resolution synthesized images: is there a simple criterion?” in
Proc. Int. Conf. Fusion Earth Data, pp. 99–105 (2000).

35. L. Alparone et al., “Multispectral and panchromatic data fusion assessment without
reference,” Photogramm. Eng. Remote Sens. 74(2), 193–200 (2008).

36. Z. Wang and A. C. Bovik, “A universal image quality index,” Signal Process. Lett. 9(3),
81–84 (2002).

37. Y. Zhang, Methods for Image Fusion Quality Assessment–A Review, Comparison and
Analysis, The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XXXVII, Part B7, Beijing 2008, pp. 1101–1109, International Society
of Photogrammetry and Remote Sensing (2008).

Qizhi Xu received his PhD in computer science from Beihang University, Beijing, China, in
2013. He is currently an associate professor at Beihang University, Beijing, China. From
2013 to 2015, he worked as a postdoctoral fellow in the Canada Research Chair Laboratory in
Advanced Geomatics Image Processing, Department of Geodesy and Geomatics Engineering,
University of New Brunswick, Canada.

Weixing Qiu received his BS degree from the National University of Defense Technology,
Hunan, China, in 2010. He is currently working toward his PhD in computer science from
Beihang University, Beijing, China. His research interests include information fusion, object
detection, and image understanding.

Bo Li received his PhD in computer science from Beihang University in 1993. He is a professor
of computer science and engineering at Beihang University, the director of Beijing Key
Laboratory of Digital Media, and has published over 100 conference and journal papers in
diversified research fields including digital video and image compression, video analysis and
understanding, remote sensing image fusion, and embedded digital image processing.

Feng Gao is currently a lecturer at the College of Information Science and Engineering, Ocean
University of China. He received his BS degree in software engineering from Chongqing
University, China, in 2008 and received his PhD in computer science from Beihang
University, China, in 2015. His research interests include information fusion, computer vision,
and image understanding.

Xu et al.: Hyperspectral and panchromatic image fusion through an improved ratio enhancement

Journal of Applied Remote Sensing 015017-14 Jan–Mar 2017 • Vol. 11(1)

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 03/09/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx


