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Multiscale Contour Extraction Using a Level Set
Method in Optical Satellite Images

Qizhi Xu, Bo Li, Zhaofeng He, and Chao Ma

Abstract—This letter presents a novel coarse-to-fine level set
method for contour extraction in optical satellite images. To dis-
tinguish objects from a background, the undecimated wavelet
transform is firstly adopted to extract image features, and a
homogeneity metric is defined to measure the variation of the
features inside and outside contours. In addition, the weight dis-
tribution ratio is proposed to adaptively tune the relative weight
of the features. Based on the homogeneity metric and the weight
distribution ratio, a novel energy functional is developed to model
a contour extraction problem, and in order to reduce the compu-
tation burden, a coarse-to-fine scheme is applied to progressively
extract contours in finer scale, during which a contour position
constraint is introduced to limit contours evolving in a small
space around the candidate contours extracted in coarser scale.
Extensive experiments have been carried out on optical satellite
images to validate the proposed method.

Index Terms—Contour extraction, homogeneity metric, level set
methods, undecimated wavelet transform (UWT).

I. INTRODUCTION

CONTOUR extraction is an important and challenging
image segmentation problem in computer vision. Object

contours are free of texture edges and are important features
for shape-based object recognition. The aim of this letter is
to find the complete 2-D boundaries of the salient objects in
optical satellite images via a level set method. It is a hard
problem that remains largely unsolved since the mid-1960s [1].
In addition, with the increasing availability of high-resolution
satellites and airborne sensors, satellite images capture more
details and complex structures of an observed scene and thus
poses new challenges for contour extraction. Here, we mainly
focus on two challenges.
1) The first is feature extraction. Contour extraction meth-
ods are largely dependent on the features of the highly
discriminative ability to distinguish objects from a back-
ground. However, traditional features are generally of
high dimensionality and computationally expensive. Fur-
thermore, it is difficult to measure the relative weight of
different features.

2) Then, the second one is the computation burden. The
size of objects becomes larger and larger due to finer
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Fig. 1. Differences of the discriminative ability between wavelet coefficient
components. (a) Original image. (b) Hand-labeled object. (c)–(f) Four wavelet
coefficient components. It is easy to distinguish the object from the background
in (d)–(f), whereas it is hard in (c).

resolution of modern sensors, but most contour extraction
methods are time consuming as size increases. Hence,
reducing computational cost is a key issue for high-
resolution optical satellite images.

Many level set methods [2]–[8] have been proposed to solve
the contour extraction problem, but they come up against
difficulties when dealing with the aforementioned challenges.
Most level set methods [2]–[5] mainly use intensity differ-
ences between objects and the background to extract object
contours, and these methods [3]–[5] are mainly based on
the probability distribution of intensity feature values for the
sake of robustness to noise. However, as being pointed out
in [2], there are objects that cannot be detected using only
intensity features [see Fig. 1(a)]. This situation is even more
common in optical satellite images. To overcome this problem,
tensor features, which comprehensively represent the texture
and intensity information of images, were introduced into the
level set methods [6], [7]. Tensor-based methods provide a
significant improvement for texture-rich images. For example,
the method in [6] dynamically tunes the relative weight of
tensor features and consequently outperforms other methods in
real applications. However, despite the dimension reduction of
tensor features, the computation burden of these methods is also
greatly increased. In some cases, the dimension reduction can
lose significant information of tensor features, thus resulting
in failures of contour extraction. Unlike the aforementioned
methods, a multiscale stochastic level set method was devel-
oped in [8] to find a global optimization of image segmentation.
This method improves the robustness of the methods [2]–[5]
and works well on intensity-homogeneous images.
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In this letter, we propose a level-set-based multiscale method
that exploits weighted wavelet features to extract the contours
of salient objects. The method is evaluated on optical satellite
images, and a quantitative comparison of the proposed method
with the methods in [6] and [8] is provided. The main contri-
butions of this letter are as follows. First, the weighted wavelet
features are introduced into the level set method to distinguish
objects from the background. Second, based on the wavelet
features, a novel energy functional is proposed to model the
contour extraction problem. Finally, a coarse-to-fine scheme is
developed to reduce computational cost.
The remainder of this letter is organized as follows. In

Section II, a feature extraction method is presented. A contour
extraction method is described in Section III, and the numerical
solution of the proposed method is described in Section IV.
Extensive experiments on the optical satellite image database
are presented in Section V, whereas the conclusions are drawn
in Section VI.

II. FEATURE EXTRACTION

A. Wavelet Feature Extraction

Here, we present the wavelet feature extraction method
implemented by the undecimated wavelet transform (UWT)
[8]. The reason for choosing the UWT is that the UWT is
shift invariant and produces subbands of the same size as the
input image. Using the Haar filter banks g = [0.5, 0.5] and
h = [0.5, −0.5], image I is decomposed into the four subbands
w1, w2, w3, and w4 by the UWT as follows:

w1(x, y)= (gg ∗ I)(x, y) w2(x, y)=(gh ∗ I)(x, y)
w3(x, y)= (hg ∗ I)(x, y) w4(x, y)=(hh ∗ I)(x, y) (1)

where gh ∗ I is the convolution of image I , first along the
columns by g and, then, along the rows by h. Each wavelet
subband wi(i = 1, 2, 3, 4) has the same size as image I .
Let d1 = |w1|, d2 = |w2|, d3 = |w3|, and d4 = |w4|. d1

represents the intensity information of image I . d2, d3, and
d4 represent the horizontal-, vertical-, and diagonal-direction
texture information of image I . Because most of the image
energy is concentrated in d1, the values of di(i = 1, 2, 3, 4) are
rescaled to a [0„ 1] interval to balance the image energy of di.

B. Adaptive Weighting Approach for the Wavelet Feature

Due to the orientation selectivity and bandpass filtering of
the wavelet transform, the discriminative ability of the feature
components di to distinguish objects from the background
is significantly different. It is therefore necessary to assign
different weights to the feature components according to the
discriminative abilities. As shown in Fig. 1, it is clear that the
object can be easily detected in components d2, d3, and d4, so
that we should assign higher weights to them. To the best of
our knowledge, there is no exisiting reference in the literature
about using the discriminative abilities to assign feature weights
so far. Thus, the weight distribution ratio is proposed to deal
with this problem. We argue that the discriminative ability of di

should positively relate to the homogeneous difference between
the areas inside and outside the contours.

Before defining the discriminative ability of di, we first
introduce a so-called homogeneity metric for di. For a given
component di, Ω0 denotes the whole region of di. The closed
curves c, which are introduced by the level set method, divide
region Ω0 into two parts: Ω1 is the region inside c, and Ω2 is
the region outside c. The homogeneity metric of di in region
Ωk(k = 0, 1, 2) is defined by

E(di, Ωk) =

∫
Ωk

(
di(x, y)− d̄ik

)2
dxdy (2)

where d̄ik is the mean value of d
i over region Ωk. It is obvious

that the homogeneity metric E(di, Ωk) (or Ei, k for short) is
inversely related to the homogeneity of di over region Ωk.
Based on the homogeneity metric aforementioned, the dis-

criminative ability of di can be measured by

η(di, c) =
Ei,0 + ε0

Ei,1 + Ei,2 + ε0
(3)

where ε0 is a small positive quantity to avoid the denominator
vanishing. The weight distribution ratio of di is then defined as
follows:

ξ(di, c) =
η(di, c)∑4
j=1 η(d

j , c)
. (4)

For the sake of simplicity, ξ(di, c) and η(di, c) are denoted
by ξi, c and ηi, c, respectively. Since the discriminative ability
term ηi, c is dependent on curve c, ξi, c is therefore adaptively
calculated in the level set evolution.
ξi, c is a reasonable metric for assigning different weights

for di. For example, let c denote object contours. If Ei,0 ≈
Ei,1 + Ei,2, then it is hard to distinguish the objects from the
background in di, and ξi, c is small. If Ei,0 � Ei,1 + Ei,2,
then the objects can be easily distinguished from the back-
ground in di, and ξi, c is large. Based on the above analysis,
the weighted feature components are expressed by{

(ξi, c)
1
2 di | i = 1, 2, 3, 4

}
. (5)

III. MODEL DESCRIPTION

We use a four-point average downsampling scheme, which
reduces the resolution one level at a time, to create the low-
resolution images for multiscale contour extraction. In what
follows, S1 denotes the image scale without downsampling,
and SN denotes the image scale performing downsampling
by N − 1 times. In our method, the candidate contours are
firstly extracted in scale SN (see Section III-A), and then,
the contours are progressively refined from scales SN−1 to S1

(see Section III-B).

A. Model for Coarse-Scale Contour Extraction

The coarse-scale model is the minimization of an energy
functional, which is the summation of the weighted homogene-
ity metrics of the four components in regions Ω1 and Ω2. For
an image containing M objects, the contours ĉ of the objects
should satisfy the following contour condition: There exists
at least one feature component dj that satisfies Ej,0 � 0 and
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Ej,1 + Ej,2 ≈ 0. Then, the object contours ĉ can be expressed
by the minimization of an energy functional as follows:

ĉ = arg min
c

4∑
i=1

ξi, c(Ei,1 + Ei,2). (6)

The basic idea here is as follows: If di satisfies the contour
condition, thenEi,1 + Ei,2 ≈ 0, such that ξi, ĉ(Ei,1 + Ei,2) ≈
0, and if di does not satisfy the contour condition, then ξi, ĉ ≈ 0,
so that ξi, ĉ(Ei,1 + Ei,2) ≈ 0. Therefore, the object contours
can be modeled as the minimization of the above energy
functional.
Let φ(x, y) (φ or φx, y for short) denote the level set

function, then φ > 0 and φ < 0 represent regions Ω1 and Ω2,
respectively, and H(x) (Hx for short) denotes the Heaviside
function, which satisfies Hx = 1 for x ≥ 0 and Hx = 0 for
x < 0. In addition, we add the curve length metric term to the
minimization model. With the aforementioned definitions, the
level set formulation of the minimization model is given by

FN (c) = μ

∫
Ω0

|∇Hφ|dxdy +
4∑

i=1

ξi, c

∫
Ω0

(
di − d̄i1

)2
Hφ dxdy

+

4∑
i=1

ξi, c

∫
Ω0

(
di − d̄i2

)2
(1−Hφ)dxdy (7)

where
∫
Ω0

|∇Hφ|dxdy is the curve length metric, and μ is the
weight of this metric. Using this model, we can extract the
candidate contours in the coarsest scale SN with relatively low
computational cost, which paves the way for fine-scale contour
extraction.

B. Model for Fine-Scale Contour Extraction

The contour extraction model for scale Sα(1 ≤ α < N) is
the minimization of an energy functional as well. The only
difference is that a contour position constraint is introduced into
this model to reduce the contour evolution space to a small
region, which surrounds the candidate contours extracted in
scale Sα+1. The contour position constraint is measured by the
distance to the candidate contours. First, the candidate contours
of scale Sα+1 in location (i, j) are mapped to locations (2i− 1,
2j − 1), (2i− 1, 2j), (2i, 2j − 1), and (2i, 2j) in scale Sα.
In this way, we get the two-pixel width curve γα. We assume
that the actual contour position is inversely related to its dis-
tance to curve γα. Therefore, the contour position constraint
can be expressed by

Rα(x, y) = exp

(
−d(x, y, γα)− 1

2

)
(8)

where d(x, y, γα) denotes the distance of position (x, y) to
curve γα. Similar to the coarse model, the level set formulation
of the energy functional Fα(c) in scale Sα is then expressed by

Fα(c)=Rα

[
μ

∫
Ω0

|∇Hφ|dxdy +
4∑

i=1

ξi, c

∫
Ω0

(
di−d̄i1

)2
Hφ dxdy

+

4∑
i=1

ξi, c

∫
Ω0

(
di−d̄i2

)2
(1−Hφ)dxdy

]
(9)

where α < N . After obtaining the candidate contours in scale
Sα, we can extract candidate contours in scale Sα−1 in the
same way as scale Sα, such that we can interactively obtain
the object contours in original resolution images, whereas the
computational cost is greatly reduced.
By comparing (7) and (9), we can see that the level set

formulation for both coarse scale and fine scale can be written
in a uniform expression by defining RN (x, y) = 1, i.e.,

Fα(c) = Rα

[
μ

∫
Ω0

|∇Hφ|dxdy +
4∑

i=1

ξi, c

∫
Ω0

(
di − d̄i1

)2

× Hφ dxdy +
4∑

i=1

ξi, c

∫
Ω0

(
di − d̄i2

)2
(1−Hφ)dxdy

]
(10)

where 1 ≤ α ≤ N . Therefore, we can give a common numeri-
cal solution to both coarse- and fine-scale models based on the
uniform level set functional.

IV. NUMERICAL SOLUTION

Here, we describe the numerical solution to the uniform
level set functional. In order to minimize the uniform level set
functional, we deduce the associated Euler–Lagrange equation
for φ by introducing the artificial variable t to φ. We then obtain
the following:

∂φ

∂t
= δ(φ)Rα

[
μdiv

( ∇φ

|∇φ|
)

−
4∑

i=1

(
ξi, c

(
di − d̄i1

)2 − ξi, c
(
di − d̄i2

)2)]
(11)

where δ(·) is the Dirac function.
To discretize (11), we introduce the following finite differ-

ence items of function φ:

�xφx, y =
φx+1, y − φx−1, y

2
�xxφx, y =φx+1, y − 2φx, y + φx−1, y

�yφx, y =
φx, y+1 − φx, y−1

2
�yyφx, y =φx, y+1 − 2φx, y + φx, y−1

�xyφx, y =�yφx+1, y −�yφx−1, y2.

The curvature item in (11) is approximated by the difference
items as follows:

div

( ∇φ

|∇φ|
)

x, y

=
�xxφ(�yφ)2 − 2�xφ�yφ�xyφ+�yyφ(�xφ)2

[(�xφ)2 + (�yφ)2]3/2
.

Due to the fact that the Dirac function concentrates at 0, it is
approximated by the compactly supported regularized function
defined as follows:

δε1(x) =
1

π
· ε1
ε21 + x2

. (12)
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Then, the level set functional (11) can be solved by the
following iterative computing scheme:

φn+1
x, y = φn

x, y +�t ·Rα · δε
(
φn
x, y

) [
μ div

( ∇φ

|∇φ|
)

x, y

−
4∑

i=1

(
ξi, c

(
dix, y − d̄i1

)2 − ξi, c
(
dix, y − d̄i2

)2)]
. (13)

Based on the aforementioned description, the principal steps
for the N -level schemes of our method are listed as follows.
1) Create the multiscale images from scale S1 to SN by (6),
and let α = N .

2) If α < N , map the candidate contour in scale Sα+1 to Sα

to obtain the initial curves γα; otherwise, set the initial
curves γN in scale SN .

3) If n = 0, initialize φn according to curve γα, and com-
pute the contour position constraint Rα.

4) Use the narrow-band method [10] to compute φn+1 by
(14). Reinitialize φn+1. Then, check wether the solution
is stationary. If not, n = n+ 1, and repeat this step.

5) If α = α− 1, repeat steps 2, 3, and 4 until α < 1.
The direct implementation of step 4 is computationally ex-

pensive. However, this problem can be solved by the narrow-
band method (please refer to [10] for details) and the contour
position constraint in our method. Note that the narrow-band
method makes the level set evolve in a small region around the
candidate contours.

V. EXPERIMENTAL RESULTS

Here, extensive experiments are conducted to evaluate the
performance of the proposed method. The test database is
provided by the Equipment Advanced Research Project and
contains 263 optical images from the WorldView satellite, the
QuickBird satellite, and so on. Each test image contains at least
one salient object whose resolution ranges from 0.5 to 1 m. The
ground-truth contours of the salient objects are hand labeled by
satellite image interpretators.
All methods were implemented in C++ on a personal com-

puter with a Pentium IV 3.4-GHz central processing unit.
We set the initial curves using a group of 60 × 60 squares,
which are uniformly arranged with a 20-pixel interval between
each other, and reinitialize the level set function every five
evolution iterations using the Euclidean-distance-transform al-
gorithm [11] for all implementations. In all experiments, the
model parameters were set as follows: �t = 0.1, ε0 = 0.01,
ε1 = 1, and the curve length weight μ = 0.5.

A. Accuracy Comparison

We compared the accuracy of the proposed method with the
most recent multiscale method [8] and the tensor-feature-based
method [6]. In the experiments, the scale levels of both multi-
scale methods were set to three, i.e.,N = 3. In order to perform
quantitative analysis, the success score used in [6] was adopted
to measure the accuracy of extracted contours. Let Ωjoint be the
regions both inside ground-truth and extracted contours, and let
Ωunion be the regions inside the ground-truth or the extracted
contours. The success score is defined as follows:

s =
number of pixels contained in Ωjoint

number of pixels contained in Ωunion
. (14)

TABLE I
ACCURACY OF DIFFERENT METHODS ON G1 AND G2

Fig. 2. Extracted contours of two test images using different methods.
(a) Test image is 212 × 220 pixels and is taken from G1. (b) Test image is
1266 × 1278 pixels and is taken from G2.

Clearly, 0 ≤ s ≤ 1. For the hand-labeled contours, the success
score is 1.
Different methods were applied to extract contours from all

test images. In order to get some insight on the experimental
results, the test images were divided into groups G1 and G2. G1

contains 127 images that present the salient intensity difference
between objects and the background, whereas G2 contains
the remaining 136 images, which present the small intensity
difference but the salient texture difference between objects
and the background. We recorded the average and standard
deviations of success scores for both groups (see Table I).
As for G1, the average success scores of the methods in

[6] and [8] were 0.912 and 0.901, respectively. An example
of a good result is shown in Fig. 2(a). Our method achieved
a better average success score of 0.936 and a smaller standard
deviation of 0.053. One big reason for the good performance
of our method is that the contour evolution space is constrained
in the neighborhood of the candidate contours by the contour
position constraint. Without the constraint, the average success
score of our method reduced to 0.923 in the experiments.
As for G2, the average success scores of the method in [6]
and our method were 0.891 and 0.907, respectively, whereas
the average success score of the method in [8] was less than
0.5, [e.g., see Fig. 2(b)]. This is because the method in [8]
mainly uses intensity features, whereas the intensity difference
between objects and the background is small for G2. In the
experiments, we found that it is much easier to obtain accurate
candidate contours in a coarse scale; therefore, the result of our
method is also slightly better than that in [6].
In order to compare the noise robustness of the proposed

method and the methods in [6] and [8], we performed exper-
iments by adding 5%, 10%, and 15% Gaussian noise to the
images in G1 and G2. The test results are shown in Table II.
In Table II, we can see that, when adding 5%, 10%, and 15%
noise, the performance of the methods in [6] and [8] decreased
more rapidly than the proposed method. For example, when
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TABLE II
ACCURACY OF DIFFERENT METHODS ON NOISY IMAGES

Fig. 3. ATPM of different scale levels of the proposed method for small and
large images, respectively.

the images are heavily corrupted by adding up to 15% noise,
the average success scores of the proposed method for G1

and G2 decreased to 0.028 and 0.024, whereas it decreased to
0.098 and 0.137 for the method in [6] and 0.193 and 0.11 for
the method in [8]. In our opinion, the noise robustness of the
proposed method is attributed to the contour position constraint
and the noise removal scheme at the coarse scale by the average
downsampling process.

B. Computational Efficiency Analysis

Here, we compare the running time of the proposed method
with the ones in [6] and [8]. The scale levels of the method
in [8] were set to three for all test images. As the images
vary in size, the average running time (in millisecond) per
million pixels (ATPM) was adopted to measure computational
efficiency. Usually, the running time is not linearly increased
as the image size increases; therefore, we compute the average
running time separately for the 39 larger images (more than four
million pixels) and the remaining 224 smaller images.
In our experiments, the ATPM of the methods in [6] and [8]

are 1060 and 670 for small images, and 3910 and 3620 for
large images, respectively. As for our method, we performed
experiments from one to four scale levels on large images and
from one to three scale levels on small images. The experi-
mental results are shown in Fig. 3. The ATPM of our single-
level scheme are 1130 for small images and 3790 for large
images. The difference of computational efficiency between
the competing methods and our single-level scheme is small.
However, from two to four levels, the computational efficiency
of our method greatly outperforms the competing methods.
As shown in Fig. 3, compared with the single-level scheme,
the three-level scheme reduced the running time by more than
50%. As for the larger images, the four-level scheme reduced
more than 80% running time. Generally speaking, higher level

Fig. 4. Some parts of the contours lost when the scale levels of the proposed
method exceed three. The size of the image is 4578× 2348 pixels. (a) Contours
of the one scale level. (b) Contours of four scale levels.

schemes reduce more running time than lower level schemes.
However, parts of the contours may be lost when the scale
levels exceed a certain number(see Fig. 4). According to the
experiments, the optimum scale levels without priorities should
be set to three.

VI. CONCLUSION

In this letter, we have presented a coarse-to-fine level set
method to extract object contours for optical satellite images.
An adaptive weighting approach is proposed to tune the weights
of wavelet features, and a novel energy functional is introduced
into the level set method to model the contour extraction prob-
lem. Based on the model, a coarse-to-fine scheme is developed
to progressively extract contours. The experiments on a large
satellite-image database demonstrate that the proposed method
achieves encouraging performance on the running time and
improves the accuracy of the extracted contours, particularly
the contours obtained from noisy images. In the future, we plan
to study how to automatically select the scale levels for the
proposed method.
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